These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


94 related items for PubMed ID: 5774470

  • 1. Biosynthesis of ethylene. Methanesulphinic acid as cofactor in the enzymic formation of ethylene from methional.
    Mapson LW, Self R, Wardale DA.
    Biochem J; 1969 Feb; 111(4):413-8. PubMed ID: 5774470
    [Abstract] [Full Text] [Related]

  • 2. Biosynthesis of ethylene. Formation of ethylene from methional by a cell-free enzyme system from cauliflower florets.
    Mapson LW, Wardale DA.
    Biochem J; 1967 Feb; 102(2):574-85. PubMed ID: 6032971
    [Abstract] [Full Text] [Related]

  • 3. Biosynthesis of ethylene. Dual nature of cofactor required for the enzymic production of ethylene from methional.
    Mapson LW, Mead A.
    Biochem J; 1968 Aug; 108(5):875-81. PubMed ID: 5673533
    [Abstract] [Full Text] [Related]

  • 4. Biosynthesis of ethylene. Enzymes involved in its formation from methional.
    Mapson LW, Wardale DA.
    Biochem J; 1968 Apr; 107(3):433-42. PubMed ID: 5650367
    [Abstract] [Full Text] [Related]

  • 5. Enzymic evolution of ethylene from methional by a pea seedling extract.
    Ku HS, Yang SF, Pratt HK.
    Arch Biochem Biophys; 1967 Mar 20; 118(3):756-8. PubMed ID: 4963359
    [No Abstract] [Full Text] [Related]

  • 6. Biosynthesis of ethylene. Ethylene formation from methional by horseradish peroxidase.
    Yang SF.
    Arch Biochem Biophys; 1967 Nov 20; 122(2):481-7. PubMed ID: 6066254
    [No Abstract] [Full Text] [Related]

  • 7. Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli.
    Primrose SB.
    J Gen Microbiol; 1977 Feb 20; 98(2):519-28. PubMed ID: 16080
    [Abstract] [Full Text] [Related]

  • 8. Biosynthesis of ethylene. 4-methylmercapto-2-oxobutyric acid: an intermediate in the formation from methionine.
    Mapson LW, March JF, Wardale DA.
    Biochem J; 1969 Dec 20; 115(4):653-61. PubMed ID: 5357015
    [Abstract] [Full Text] [Related]

  • 9. [Biosynthesis of ethylene].
    Sakai S, Imaoka H.
    Tanpakushitsu Kakusan Koso; 1971 Jan 20; 16(1):47-55. PubMed ID: 4925098
    [No Abstract] [Full Text] [Related]

  • 10. [Peroxidases and ethylene formation in olive tree leaves].
    Vioque B, Fernández-Maculet JC, Albi MA, Castellano JM, Vioque A.
    Rev Esp Fisiol; 1989 Mar 20; 45(1):47-52. PubMed ID: 2748977
    [Abstract] [Full Text] [Related]

  • 11. ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin.
    Biteau B, Labarre J, Toledano MB.
    Nature; 2003 Oct 30; 425(6961):980-4. PubMed ID: 14586471
    [Abstract] [Full Text] [Related]

  • 12. Ethylene formation from peptides of methionine.
    Ku HS, Leopold AC.
    Biochem Biophys Res Commun; 1970 Dec 09; 41(5):1155-60. PubMed ID: 5483620
    [No Abstract] [Full Text] [Related]

  • 13. Further studies on ethylene formation from alpha-keto-gamma-methylthiobutyric acid or beta-methylthiopropionaldehyde by peroxidase in the presence of sulfite and oxygen.
    Yang SF.
    J Biol Chem; 1969 Aug 25; 244(16):4360-5. PubMed ID: 5806582
    [No Abstract] [Full Text] [Related]

  • 14. Enzymatic oxidation of mercaptoethanol to isethinic acid and isethionic acid.
    Dupré S, Federici G, Ricci G, Spoto G, Antonucci A, Cavallini D.
    Enzyme; 1978 Aug 25; 23(5):307-13. PubMed ID: 213263
    [Abstract] [Full Text] [Related]

  • 15. Lactoferrin-catalysed hydroxyl radical production. Additional requirement for a chelating agent.
    Winterbourn CC.
    Biochem J; 1983 Jan 15; 210(1):15-9. PubMed ID: 6303309
    [Abstract] [Full Text] [Related]

  • 16. The role of (14C, 15N)5-(methylthio) valeraldehyde oxime as a precursor of progoitrin.
    Lee CJ, Serif GS.
    Biochim Biophys Acta; 1971 Jan 15; 230(3):462-7. PubMed ID: 5581278
    [No Abstract] [Full Text] [Related]

  • 17. Reactions of persulfides with the heme cofactor of oxidized myoglobin and microperoxidase 11: reduction or coordination.
    Galardon E, Huguet F, Herrero C, Ricoux R, Artaud I, Padovani D.
    Dalton Trans; 2017 Jun 28; 46(24):7939-7946. PubMed ID: 28604868
    [Abstract] [Full Text] [Related]

  • 18. Ethylene formation from methional.
    Pryor WA, Tang RH.
    Biochem Biophys Res Commun; 1978 Mar 30; 81(2):498-503. PubMed ID: 666768
    [No Abstract] [Full Text] [Related]

  • 19. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation.
    Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, Rhee SG.
    Science; 2003 Apr 25; 300(5619):653-6. PubMed ID: 12714748
    [Abstract] [Full Text] [Related]

  • 20. PHYTOTOXIC SUBSTANCES FROM SOIL MICROORGANISMS AND CROP RESIDUES.
    MCCALLA TM, HASKINS FA.
    Bacteriol Rev; 1964 Jun 25; 28(2):181-207. PubMed ID: 14172023
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.