These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 5783892

  • 1. Cellulolytic bacteria occurring in the rumen of sheep conditioned to low-protein teff hay.
    Shane BS, Gouws L, Kistner A.
    J Gen Microbiol; 1969 Mar; 55(3):445-57. PubMed ID: 5783892
    [No Abstract] [Full Text] [Related]

  • 2. Extent of solubilization of alpha-cellulose and hemicellulose of low-protein teff hay by pure cultures of cellulolytic rumen bacteria.
    Kock SG, Kistner A.
    J Gen Microbiol; 1969 Mar; 55(3):459-62. PubMed ID: 5783893
    [No Abstract] [Full Text] [Related]

  • 3. Characteristics of cellulolytic cillobacteria from the rumens of sheep fed teff (Eragrostis tef) hay diets.
    van Gylswyk NO, Hoffman JP.
    J Gen Microbiol; 1970 Mar; 60(3):381-6. PubMed ID: 5487619
    [No Abstract] [Full Text] [Related]

  • 4. Characteristics of ruminococcus and cellulolytic butyrivibrio species from the rumens of sheep fed differently supplemented teff (Eragrostis tef) hay diets.
    Van Gylswyk NO, Roché CE.
    J Gen Microbiol; 1970 Nov; 64(1):11-7. PubMed ID: 5516604
    [No Abstract] [Full Text] [Related]

  • 5. Stoichiometry of glucose and starch splitting by strains of amylolytic bacteria from the rumen and anaerobic digester.
    Marounek M, Bartos S.
    J Appl Bacteriol; 1986 Jul; 61(1):81-6. PubMed ID: 3759723
    [Abstract] [Full Text] [Related]

  • 6. Rumen development in lambs. I. Microbial digestion of starch and cellulose.
    Poe SE, Ely DG, Mitchell GE, Deweese WP, Glimp HA.
    J Anim Sci; 1971 Apr; 32(4):740-3. PubMed ID: 5571558
    [No Abstract] [Full Text] [Related]

  • 7. Fusobacterium polysaccharolyticum sp.nov., a gram-negative rod from the rumen that produces butyrate and ferments cellulose and starch.
    van Gylswyk NO.
    J Gen Microbiol; 1980 Jan; 116(1):157-63. PubMed ID: 7365452
    [Abstract] [Full Text] [Related]

  • 8. CELLULOLYTIC COCCI OCCURRING IN THE RUMEN OF SHEEP CONDITIONED TO LUCERNE HAY.
    KISTNER A, GOUWS L.
    J Gen Microbiol; 1964 Mar; 34():447-58. PubMed ID: 14135549
    [No Abstract] [Full Text] [Related]

  • 9. Relative efficiency of pure cultures of different species of cellulolytic rumen bacteria in solubilizing cellulose in vitro.
    van Gylswyk NO, Labuschagne JP.
    J Gen Microbiol; 1971 Apr; 66(1):109-13. PubMed ID: 5105302
    [No Abstract] [Full Text] [Related]

  • 10. A comparison of two techniques for counting cellulolytic rumen bacteria.
    van Gylswyk NO.
    J Gen Microbiol; 1970 Feb; 60(2):191-7. PubMed ID: 4922669
    [No Abstract] [Full Text] [Related]

  • 11. A comparison of strains of Eubacterium cellulosolvens from the rumen.
    Prins RA, Van Vugt F, Hungate RE, Van Vorstenbosch CJ.
    Antonie Van Leeuwenhoek; 1972 Feb; 38(2):153-61. PubMed ID: 4537442
    [No Abstract] [Full Text] [Related]

  • 12. The effects of starch and protein degradation rates, hay sources, and feeding frequency on rumen microbial fermentation in a continuous culture system.
    Chen CY, Hsu JT.
    Proc Natl Sci Counc Repub China B; 1998 Oct; 22(4):159-65. PubMed ID: 9850598
    [Abstract] [Full Text] [Related]

  • 13. Effect of Eubacterium limosum, a ruminal hydrogenotrophic bacterium, on the degradation and fermentation of cellulose by 3 species of rumen anaerobic fungi.
    Bernalier A, Fonty G, Bonnemoy F, Gouet P.
    Reprod Nutr Dev; 1993 Oct; 33(6):577-84. PubMed ID: 8142039
    [Abstract] [Full Text] [Related]

  • 14. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive.
    Mosoni P, Chaucheyras-Durand F, Béra-Maillet C, Forano E.
    J Appl Microbiol; 2007 Dec; 103(6):2676-85. PubMed ID: 18045448
    [Abstract] [Full Text] [Related]

  • 15. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria.
    Russell JB.
    Appl Environ Microbiol; 1985 Mar; 49(3):572-6. PubMed ID: 3994365
    [Abstract] [Full Text] [Related]

  • 16. [Isolation and identification of rumen bacteria for cellulolytic enzyme production].
    Aihemaiti M, Zhen F, Li Y, Aibaidoula G, Yimit W.
    Wei Sheng Wu Xue Bao; 2013 May 04; 53(5):470-7. PubMed ID: 23957151
    [Abstract] [Full Text] [Related]

  • 17. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities.
    Martínez ME, Ranilla MJ, Tejido ML, Saro C, Carro MD.
    J Dairy Sci; 2010 Aug 04; 93(8):3699-712. PubMed ID: 20655439
    [Abstract] [Full Text] [Related]

  • 18. Effects of replacing dietary starch with neutral detergent-soluble fibre on ruminal fermentation, microbial synthesis and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC).
    Zhao XH, Liu CJ, Liu Y, Li CY, Yao JH.
    J Anim Physiol Anim Nutr (Berl); 2013 Dec 04; 97(6):1161-9. PubMed ID: 23278844
    [Abstract] [Full Text] [Related]

  • 19. Detection and identification of rumen bacteria constituting a fibrolytic consortium dominated by Fibrobacter succinogenes.
    Shinkai T, Ueki T, Kobayashi Y.
    Anim Sci J; 2010 Feb 04; 81(1):72-9. PubMed ID: 20163675
    [Abstract] [Full Text] [Related]

  • 20. Trends and innovations in rumen microbiology.
    Hobson PN.
    Soc Appl Bacteriol Symp Ser; 1976 Feb 04; 4():125-40. PubMed ID: 5779
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.