These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


165 related items for PubMed ID: 5787005

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Pectic enzymes in some pectinolytic rumen bacteria.
    Wojciechowicz M, Tomerska H.
    Acta Microbiol Pol A; 1971; 3(1):57-61. PubMed ID: 5168995
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. [Interaction among anaerobic microbe species in the rumen].
    Gouet P, Grain J, Dubourguier HC, Albagnac G.
    Reprod Nutr Dev (1980); 1986; 26(1B):147-59. PubMed ID: 3517985
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Nutritional requirements of the predominant rumen cellulolytic bacteria.
    Bryant MP.
    Fed Proc; 1973 Jul; 32(7):1809-13. PubMed ID: 4718898
    [No Abstract] [Full Text] [Related]

  • 10. The rumen microbial ecosystem--some recent developments.
    Flint HJ.
    Trends Microbiol; 1997 Dec; 5(12):483-8. PubMed ID: 9447660
    [Abstract] [Full Text] [Related]

  • 11. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen.
    Russell JB, Muck RE, Weimer PJ.
    FEMS Microbiol Ecol; 2009 Feb; 67(2):183-97. PubMed ID: 19120465
    [Abstract] [Full Text] [Related]

  • 12. [Postprandial changes in carbohydrate composition of the rumen's microbial population in relation to dietary carbohydrates. II. Bacteria].
    Jouany JP, Thivend P.
    Ann Biol Anim Biochim Biophys; 1972 Feb; 12(4):679-83. PubMed ID: 4667625
    [No Abstract] [Full Text] [Related]

  • 13. Fermentation of a bacterial cellulose/xylan composite by mixed ruminal microflora: implications for the role of polysaccharide matrix interactions in plant cell wall biodegradability.
    Weimer PJ, Hackney JM, Jung HJ, Hatfield RD.
    J Agric Food Chem; 2000 May; 48(5):1727-33. PubMed ID: 10820086
    [Abstract] [Full Text] [Related]

  • 14. Utilization of the intermediate products of the decomposition of pectin and of galacturonic acid by pure strains of rumen bacteria.
    Tomerska H, Wojciechowicz M.
    Acta Microbiol Pol B; 1973 May; 5(1):63-9. PubMed ID: 4735641
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Inositol metabolism and cell wall formation in plants.
    Loewus F.
    Fed Proc; 1965 May; 24(4):855-62. PubMed ID: 5829186
    [No Abstract] [Full Text] [Related]

  • 17. [Localization of catalysis enzyme systems that degrade higher plants' cell wall polysaccharides. Pectinases (review)].
    Rodionova NA, Bezborodov AM.
    Prikl Biokhim Mikrobiol; 1997 May; 33(5):467-87. PubMed ID: 9441296
    [Abstract] [Full Text] [Related]

  • 18. Biomass degrading enzymes from anaerobic rumen fungi.
    Chen H, Li XL, Ljungdahl LG.
    SAAS Bull Biochem Biotechnol; 1995 May; 8():1-6. PubMed ID: 7546571
    [Abstract] [Full Text] [Related]

  • 19. Influence of growth environment on the cell wall anionic polymers in some Gram-positive bacteria.
    Ellwood DC, Tempest DW.
    J Gen Microbiol; 1969 Aug; 57(3):xv. PubMed ID: 5362659
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.