These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 5822828

  • 1. The accumulation of calcium in laying fowl intestine in vitro.
    Bar A, Hurwitz S.
    Biochim Biophys Acta; 1969; 183(3):591-600. PubMed ID: 5822828
    [No Abstract] [Full Text] [Related]

  • 2. The dependence of calcium influx into rat intestine on sugars and alkali metals.
    Patrick G, Stirling C.
    Arch Int Physiol Biochim; 1973 Sep; 81(3):453-67. PubMed ID: 4127484
    [No Abstract] [Full Text] [Related]

  • 3. Characteristics of amino acid accumulation by isolated intestinal epithelial cells.
    Tucker AM, Kimmich GA.
    J Membr Biol; 1973 Sep; 12(1):1-22. PubMed ID: 4781064
    [No Abstract] [Full Text] [Related]

  • 4. Effect of K+ and K+ gradients on accumulation of sugars by isolated intestinal epithelial cells.
    Kimmich GA, Randles J.
    J Membr Biol; 1973 Sep; 12(1):23-46. PubMed ID: 4781065
    [No Abstract] [Full Text] [Related]

  • 5. Interaction between Na+-dependent transport systems for sugars and amino acids. Evidence against a role for the sodium gradient.
    Kimmich GA, Randles J.
    J Membr Biol; 1973 Sep; 12(1):47-68. PubMed ID: 4781066
    [No Abstract] [Full Text] [Related]

  • 6. D-Arabinose influx across the brush border of rabbit ileum.
    Schultz SG, Yu-Tu L.
    Biochim Biophys Acta; 1970 Sep; 196(2):351-3. PubMed ID: 5414309
    [No Abstract] [Full Text] [Related]

  • 7. An example of mutual competition between transport inhibitors of different kinetic type: the inhibition of intestinal transport of glucalogues by phloretin and phlorizin.
    Colombo VE, Semenza G.
    Biochim Biophys Acta; 1972 Oct 23; 288(1):145-52. PubMed ID: 4640383
    [No Abstract] [Full Text] [Related]

  • 8. In vitro calcium transport in laying fowl intestine: effect of bile preparations.
    Bar A, Hurwitz S.
    Comp Biochem Physiol A Comp Physiol; 1972 Feb 01; 41(2):383-9. PubMed ID: 4404315
    [No Abstract] [Full Text] [Related]

  • 9. Sodium-glucose relationships during intestinal sorption in dogs.
    Heaton JW, Code CF.
    Am J Physiol; 1969 Apr 01; 216(4):749-55. PubMed ID: 5775873
    [No Abstract] [Full Text] [Related]

  • 10. Preparation and properties of mucosl epithelial cells isolated frmsmall intestine of the chicken.
    Kimmich GA.
    Biochemistry; 1970 Sep 15; 9(19):3659-68. PubMed ID: 5507516
    [No Abstract] [Full Text] [Related]

  • 11. Calcium uptake by pancreatic -cells as measured with the aid of 45 Ca and mannitol- 3 H.
    Hellman B, Sehlin J, Täljedal IB.
    Am J Physiol; 1971 Dec 15; 221(6):1795-801. PubMed ID: 4941910
    [No Abstract] [Full Text] [Related]

  • 12. In vitro calcium transport in laying fowl intestine: characterization of the system and medium composition.
    Bar A, Hurwitz S.
    Poult Sci; 1969 May 15; 48(3):1105-13. PubMed ID: 5355523
    [No Abstract] [Full Text] [Related]

  • 13. Transepithelial D-glucose and D-fructose transport across the American lobster, Homarus americanus, intestine.
    Obi IE, Sterling KM, Ahearn GA.
    J Exp Biol; 2011 Jul 15; 214(Pt 14):2337-44. PubMed ID: 21697425
    [Abstract] [Full Text] [Related]

  • 14. Effects of anoxia and metabolic inhibitors on the sugar-evoked potential and demonstration of sugar-outflow potential in toad intestine.
    Hoshi T, Komatsu Y.
    Tohoku J Exp Med; 1970 Jan 15; 100(1):47-59. PubMed ID: 5416555
    [No Abstract] [Full Text] [Related]

  • 15. Galactose transport in rabbit ileum.
    Naftalin R, Curran PF.
    J Membr Biol; 1974 Jan 15; 16(3):257-78. PubMed ID: 4835416
    [No Abstract] [Full Text] [Related]

  • 16. The modulation by glucose transport of the electrical responses to hypertonic solutions of the goldfish intestinal epithelium.
    Siegenbeek van Heukelom J, van den Ham MD, Dekker K.
    Pflugers Arch; 1982 Oct 15; 395(1):65-70. PubMed ID: 7177774
    [Abstract] [Full Text] [Related]

  • 17. A distinct D-fructose transport system in isolated brush border membrane.
    Sigrist-Nelson K, Hopfer U.
    Biochim Biophys Acta; 1974 Oct 29; 367(2):247-54. PubMed ID: 4425667
    [No Abstract] [Full Text] [Related]

  • 18. Intestinal sugar transport: ionic activation and chemical specificity.
    Bihler I.
    Biochim Biophys Acta; 1969 Jun 03; 183(1):169-81. PubMed ID: 5792864
    [No Abstract] [Full Text] [Related]

  • 19. Selective permeability of the small intestine for fructose.
    Guy MJ, Deren JJ.
    Am J Physiol; 1971 Oct 03; 221(4):1051-6. PubMed ID: 5111247
    [No Abstract] [Full Text] [Related]

  • 20. On the uptake of hexoses by rat cerebral cortical slices.
    Cooke WJ, Robinson JD.
    J Neurochem; 1971 Jul 03; 18(7):1351-6. PubMed ID: 5118887
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.