These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 5947150

  • 21. BACTERIAL METABOLISM OF 2-METHYLALANINE.
    AASLESTAD HG, LARSON AD.
    J Bacteriol; 1964 Nov; 88(5):1296-303. PubMed ID: 14234784
    [Abstract] [Full Text] [Related]

  • 22. Heme biosynthesis in mammalian systems: evidence of a Schiff base linkage between the pyridoxal 5'-phosphate cofactor and a lysine residue in 5-aminolevulinate synthase.
    Ferreira GC, Neame PJ, Dailey HA.
    Protein Sci; 1993 Nov; 2(11):1959-65. PubMed ID: 8268805
    [Abstract] [Full Text] [Related]

  • 23. Pyridoxal phosphate. An anionic probe for protein amino groups exposed on the outer and inner surfaces of intact human red blood cells.
    Cabantchik IZ, Balshin M, Breuer W, Rothstein A.
    J Biol Chem; 1975 Jul 10; 250(13):5130-6. PubMed ID: 168199
    [Abstract] [Full Text] [Related]

  • 24. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P, Kontro J, Manner H, Hatakka A, Sipilä J.
    Fungal Genet Biol; 2014 Nov 10; 72():137-149. PubMed ID: 25108071
    [Abstract] [Full Text] [Related]

  • 25. A comparison of horseradish peroxidase and manganese ions as catalysts for the oxidation of dihydroxyfumaric acid.
    Hartree EF.
    Biochem J; 1968 Apr 10; 107(4):581-7. PubMed ID: 5660638
    [Abstract] [Full Text] [Related]

  • 26. Enzyme assay for pyridoxal 5'-phosphate by apo-D-amino acid aminotransferase.
    Ota H, Mushiga M, Yoshimura T, Yoshimune K.
    J Biosci Bioeng; 2015 Jul 10; 120(1):117-9. PubMed ID: 25622769
    [Abstract] [Full Text] [Related]

  • 27. Comparative evaluation of manganese peroxidase- and Mn(III)-initiated peroxidation of C18 unsaturated fatty acids by different methods.
    Kapich AN, Korneichik TV, Hammel KE, Hatakka A.
    Enzyme Microb Technol; 2011 Jun 10; 49(1):25-9. PubMed ID: 22112267
    [Abstract] [Full Text] [Related]

  • 28. Resolution of pyridoxal 5'-phosphate from O-acetylserine sulfhydrylase from Salmonella typhimurium and reconstitution of apoenzyme with cofactor and cofactor analogues as a probe of the cofactor binding site.
    Schnackerz KD, Cook PF.
    Arch Biochem Biophys; 1995 Dec 01; 324(1):71-7. PubMed ID: 7503562
    [Abstract] [Full Text] [Related]

  • 29. Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide.
    Berlett BS, Chock PB, Yim MB, Stadtman ER.
    Proc Natl Acad Sci U S A; 1990 Jan 01; 87(1):389-93. PubMed ID: 2296594
    [Abstract] [Full Text] [Related]

  • 30. Reactions of pyrzdoxal 5'-phosphate, 6-aminocaproic acid, cysteine, and penicilamine. Models for reactions of Schiff base linkages in pyridoxal 5'-phosphate-requiring enymes.
    Schonbeck ND, Skalski M, Shafer JA.
    J Biol Chem; 1975 Jul 25; 250(14):5343-51. PubMed ID: 237917
    [Abstract] [Full Text] [Related]

  • 31. Role of pyridoxal phosphate in thyroid hormone biosynthesis.
    DeGroot LJ, Jaksina S, Karmarkar M.
    Endocrinology; 1968 Dec 25; 83(6):1253-8. PubMed ID: 5721997
    [No Abstract] [Full Text] [Related]

  • 32. The pyridoxal phosphate-dependent oxidative decarboxylation of methionine by peroxidase. II. Identification of 3-methylthiopropionamide as a product of the reaction.
    MAZELIS M, INGRAHAM LL.
    J Biol Chem; 1962 Jan 25; 237():109-12. PubMed ID: 14471796
    [No Abstract] [Full Text] [Related]

  • 33. The pyridoxal phosphate-dependent oxidative decarboxylation of methionine by peroxidase. I. Characteristics and properties of the reaction.
    MAZELIS M.
    J Biol Chem; 1962 Jan 25; 237():104-8. PubMed ID: 14471797
    [No Abstract] [Full Text] [Related]

  • 34. [Phosphopyridoxal cyclic compounds as regulators of phosphopyridoxal enzyme activities].
    Kierska D.
    Postepy Hig Med Dosw; 1979 Jan 25; 33(3):263-84. PubMed ID: 117439
    [No Abstract] [Full Text] [Related]

  • 35. The binding affinity of amphetamine to 4-pyridinecarboxaldehyde and the coenzymes pyridoxal and pyridoxal-5-phosphate.
    El-Ezaby MS, Moussa NM, El-Hilaly AE, Farid S.
    Chem Pharm Bull (Tokyo); 1977 Mar 25; 25(3):401-12. PubMed ID: 872272
    [No Abstract] [Full Text] [Related]

  • 36. Emergence of oxygen- and pyridoxal phosphate-dependent reactions.
    Hoffarth ER, Rothchild KW, Ryan KS.
    FEBS J; 2020 Apr 25; 287(7):1403-1428. PubMed ID: 32142210
    [Abstract] [Full Text] [Related]

  • 37. The dietary protein paradox and threonine 15 N-depletion: Pyridoxal-5'-phosphate enzyme activity as a mechanism for the δ15 N trophic level effect.
    Fuller BT, Petzke KJ.
    Rapid Commun Mass Spectrom; 2017 Apr 30; 31(8):705-718. PubMed ID: 28181729
    [Abstract] [Full Text] [Related]

  • 38. Insights into the mechanism of oxidative deamination catalyzed by DOPA decarboxylase.
    Bertoldi M, Cellini B, Montioli R, Borri Voltattorni C.
    Biochemistry; 2008 Jul 08; 47(27):7187-95. PubMed ID: 18547057
    [Abstract] [Full Text] [Related]

  • 39. Reversible modification of pig heart mitochondrial malate dehydrogenase by pyridoxal 5'-phosphate.
    Chen SS, Engel PC.
    Biochem J; 1975 Nov 08; 151(2):297-303. PubMed ID: 175777
    [Abstract] [Full Text] [Related]

  • 40. The role of acetaldehyde in mediating the deleterious effect of ethanol on pyridoxal 5'-phosphate metabolism.
    Lumeng L.
    J Clin Invest; 1978 Aug 08; 62(2):286-93. PubMed ID: 27531
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.