These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


102 related items for PubMed ID: 5961271

  • 61. The lipids of membraneous cell organelles isolated from the ciliate, Tetrahymena pyriformis.
    Jonah M, Erwin JA.
    Biochim Biophys Acta; 1971 Feb 02; 231(1):80-92. PubMed ID: 4100604
    [No Abstract] [Full Text] [Related]

  • 62. Lipid metabolism in anaerobic ecosystems.
    Mackie RI, White BA, Bryant MP.
    Crit Rev Microbiol; 1991 Feb 02; 17(6):449-79. PubMed ID: 2039587
    [Abstract] [Full Text] [Related]

  • 63. Quantitative chemical taxonomy based upon composition of lipids.
    Holman RT.
    Prog Chem Fats Other Lipids; 1978 Feb 02; 16():9-29. PubMed ID: 358272
    [No Abstract] [Full Text] [Related]

  • 64. The composition of lipids from rice hulls and from the surface of rice caryopsis.
    Hartman L, Lago RC.
    J Sci Food Agric; 1976 Oct 02; 27(10):939-42. PubMed ID: 994470
    [No Abstract] [Full Text] [Related]

  • 65. Chemistry and biochemistry of taurolipids.
    Kaya K.
    Prog Lipid Res; 1992 Oct 02; 31(1):87-108. PubMed ID: 1641398
    [No Abstract] [Full Text] [Related]

  • 66.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 67. 8,9,13-triacetoxydocosanoic acid, an extracellularlipid produced by a yeast.
    Stodola FH, Vesonder RF, Wickerham LJ.
    Biochemistry; 1965 Jul 02; 4(7):1390-4. PubMed ID: 5856639
    [No Abstract] [Full Text] [Related]

  • 68. Simple and complex lipids: their occurrence, chemistry, and biochemistry.
    Christie WW.
    Nat Prod Rep; 1987 Apr 02; 4(2):113-28. PubMed ID: 3302775
    [No Abstract] [Full Text] [Related]

  • 69. Modifying the lipid content and composition of plant seeds: engineering the production of LC-PUFA.
    Ruiz-Lopez N, Usher S, Sayanova OV, Napier JA, Haslam RP.
    Appl Microbiol Biotechnol; 2015 Jan 02; 99(1):143-54. PubMed ID: 25417743
    [Abstract] [Full Text] [Related]

  • 70.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 71. An alternate pathway to long-chain polyunsaturates: the FADS2 gene product Delta8-desaturates 20:2n-6 and 20:3n-3.
    Park WJ, Kothapalli KS, Lawrence P, Tyburczy C, Brenna JT.
    J Lipid Res; 2009 Jun 02; 50(6):1195-202. PubMed ID: 19202133
    [Abstract] [Full Text] [Related]

  • 72. Fatty acid desaturase specificity of Tetrahymena.
    Conner RL, Burtness B, Ferguson KA.
    Lipids; 1984 Apr 02; 19(4):285-8. PubMed ID: 6717257
    [Abstract] [Full Text] [Related]

  • 73.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 74.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 75.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 76.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 77. Metabolism of alpha-glyceryl ethers by Tetrahymena pyriformis. I. Characteristics of the in vivo degradation system.
    Kapoulas VM, Thompson GA, Hanahan DJ.
    Biochim Biophys Acta; 1969 Mar 04; 176(2):237-49. PubMed ID: 5775946
    [No Abstract] [Full Text] [Related]

  • 78.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 79. The effect of temperature on the 1-O-alkyl content of the glycerophospholipids in Tetrahymena.
    Lund-Katz S, Conner RL.
    Biochem Biophys Res Commun; 1981 Aug 14; 101(3):837-45. PubMed ID: 7306116
    [No Abstract] [Full Text] [Related]

  • 80.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.