These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The origin of fatty acids in the hydrocarbon-utilizing microorganism Mycobacterium vaccae. King DH, Perry JJ. Can J Microbiol; 1975 Jan; 21(1):85-9. PubMed ID: 1116040 [Abstract] [Full Text] [Related]
4. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Aeckersberg F, Rainey FA, Widdel F. Arch Microbiol; 1998 Oct; 170(5):361-9. PubMed ID: 9818355 [Abstract] [Full Text] [Related]
7. Oxidation of n-tetradecane and 1-tetradecene by fungi. Allen JE, Markovetz AJ. J Bacteriol; 1970 Aug; 103(2):426-34. PubMed ID: 5432008 [Abstract] [Full Text] [Related]
8. Lipid components of the hydrocarbon assimilating yeast Candida lipolytica (strain 10). Jwanny EW. Z Allg Mikrobiol; 1975 Aug; 15(6):423-39. PubMed ID: 1199134 [Abstract] [Full Text] [Related]
9. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids. Makula RA, Finnerty WR. J Bacteriol; 1972 Oct; 112(1):398-407. PubMed ID: 5079069 [Abstract] [Full Text] [Related]
12. Enabling the synthesis of medium chain alkanes and 1-alkenes in yeast. Zhu Z, Zhou YJ, Kang MK, Krivoruchko A, Buijs NA, Nielsen J. Metab Eng; 2017 Nov; 44():81-88. PubMed ID: 28939277 [Abstract] [Full Text] [Related]
14. Anaerobic formation of n-decyl alcohol from n-decene-1 by resting cells of Candida rugosa. Iida M, Iizuka H. Z Allg Mikrobiol; 1970 Nov; 10(4):245-51. PubMed ID: 5485018 [No Abstract] [Full Text] [Related]
15. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T. Grossi V, Cravo-Laureau C, Méou A, Raphel D, Garzino F, Hirschler-Réa A. Appl Environ Microbiol; 2007 Dec; 73(24):7882-90. PubMed ID: 17965214 [Abstract] [Full Text] [Related]