These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 6070842
1. Inorganic orthophosphate activation and adenosine diphosphate as the primary phosphoryl acceptor in oxidative phosphorylation. Hill RD, Boyer PD. J Biol Chem; 1967 Oct 10; 242(19):4320-3. PubMed ID: 6070842 [No Abstract] [Full Text] [Related]
2. The apparent absolute requirement of adenosine diphosphate for the inorganic phosphate--water exchange of oxidative phosphorylation. Jones DH, Boyer PD. J Biol Chem; 1969 Nov 10; 244(21):5767-72. PubMed ID: 5350933 [No Abstract] [Full Text] [Related]
3. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP. Luzikov VN, Saks VA, Kupriyanov VV. Biochim Biophys Acta; 1971 Nov 02; 253(1):46-57. PubMed ID: 4331272 [No Abstract] [Full Text] [Related]
4. Adenosine monophosphate as the first phosphoryl acceptor in oxidative phosphorylation. Ozawa T. Arch Biochem Biophys; 1966 Nov 02; 117(2):201-23. PubMed ID: 5972817 [No Abstract] [Full Text] [Related]
5. Adenosine diphosphate as the primary phosphoryl acceptor in oxidative phosphorylation. Colli W, Pullman ME. J Biol Chem; 1969 Jan 10; 244(1):135-41. PubMed ID: 4975222 [No Abstract] [Full Text] [Related]
6. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action. Mitchell RA, Chang BF, Huang CH, DeMaster EG. Biochemistry; 1971 May 25; 10(11):2049-54. PubMed ID: 4327397 [No Abstract] [Full Text] [Related]
7. Adenine nucleotide translocation in mitochondria. Quantitative evaluation of the correlation between the phosphorylation of endogenous and exogenous ADP in mitochondria. Heldt HW, Pfaff E. Eur J Biochem; 1969 Oct 25; 10(3):494-500. PubMed ID: 5348075 [No Abstract] [Full Text] [Related]
8. On the coupling between the transport of phosphate and adenine nucleotides in rat liver mitochondria. McGivan JD, Grebe K, Klingenberg M. Biochem Biophys Res Commun; 1971 Dec 17; 45(6):1533-41. PubMed ID: 5128194 [No Abstract] [Full Text] [Related]
9. Differences between the reactivity of endogenous and exogenous adenine nucleotides in mitochondria as studied at low temperature. Heldt HW, Klingenberg M. Eur J Biochem; 1968 Mar 17; 4(1):1-8. PubMed ID: 5646147 [No Abstract] [Full Text] [Related]
10. The utilization of 14C-labelled adenosine diphosphate during the in vitro respiration of housefly sarcosomes. Carney GC. Life Sci; 1969 May 15; 8(10):453-64. PubMed ID: 5793502 [No Abstract] [Full Text] [Related]
11. Synchronous appearance of adenine nucleotide translocase activity and oxidative phosphorylation in mitochondria from flight-muscle of the developing sheep blowfly, Lucilia cuprina. Doy FA, Daday AA, Bygrave FL. FEBS Lett; 1975 Jun 15; 54(2):245-8. PubMed ID: 1132511 [No Abstract] [Full Text] [Related]
12. ENDOGENOUS ADP OF MITOCHONDRIA, AN EARLY PHOSPHATE ACCEPTOR OF OXIDATIVE PHOSPHORYLATION AS DISCLOSED BY KINETIC STUDIES WITH C14 LABELLED ADP AND ATP AND WITH ATRACTYLOSIDE. HELDT HW, JACOBS H, KLINGENBERG M. Biochem Biophys Res Commun; 1965 Jan 18; 18():174-9. PubMed ID: 14282014 [No Abstract] [Full Text] [Related]
13. Comparative studies of the ADP-ATP and the Pi-ATP exchange reactions related to oxidative phosphorylation in rat-liver mitochondria. Groot GS. Biochim Biophys Acta; 1969 Aug 05; 180(3):439-44. PubMed ID: 5810845 [No Abstract] [Full Text] [Related]
14. Phosphate acceptor specificity during oxidative phosphorylation in submitochondrial particles. Vallin I, Lundberg P. Biochim Biophys Acta; 1972 Feb 28; 256(2):179-90. PubMed ID: 4335833 [No Abstract] [Full Text] [Related]
15. Partial resolution of the enzymes catalyzine oxidative phosphorylation. XII. The H-2-18-O-inorganic phosphate and H-2-18-O-adenosine triphosphate exchange reactions in submitochondrial particles from beef heart. Hinkle PC, Penefsky HS, Racker E. J Biol Chem; 1967 Apr 25; 242(8):1788-92. PubMed ID: 6024769 [No Abstract] [Full Text] [Related]
16. Compartmentation of orthophosphate and adenine nucleotides in human red cells. Till U, Köhler W, Ruschke I, Köhler A, Lösche W. Eur J Biochem; 1973 May 25; 35(1):167-78. PubMed ID: 4713238 [No Abstract] [Full Text] [Related]
17. NAD + -induced phosphate acceptor specificity in submitochondrial systems. Vallin I, Lundberg P. Biochim Biophys Acta; 1972 Feb 28; 256(2):191-8. PubMed ID: 4335834 [No Abstract] [Full Text] [Related]
18. Esterification of adenosine monophosphate coupled with the respiration of heavy beef heart mitochondria. Ozawa T. J Biochem; 1969 May 28; 65(5):679-91. PubMed ID: 5806963 [No Abstract] [Full Text] [Related]
19. Uncoupling of oxidative phosphorylation by vanadate. Hathcock JN, Hill CH, Tove SB. Can J Biochem; 1966 Jul 28; 44(7):983-8. PubMed ID: 5968385 [No Abstract] [Full Text] [Related]
20. Studies on energy transfer in mitochondrial oxidative phosphorylation. 3. On the interaction of adenosine diphosphate with high-energy intermediates. Eisenhardt RH, Rosenthal O. Biochemistry; 1968 Apr 28; 7(4):1327-33. PubMed ID: 5677821 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]