These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 6089577

  • 1. Proton-sulfate cotransport: external proton activation of sulfate influx into human red blood cells.
    Milanick MA, Gunn RB.
    Am J Physiol; 1984 Sep; 247(3 Pt 1):C247-59. PubMed ID: 6089577
    [Abstract] [Full Text] [Related]

  • 2. Glycine transport by human red blood cells and ghosts: evidence for glycine anion and proton cotransport by band 3.
    King PA, Gunn RB.
    Am J Physiol; 1991 Nov; 261(5 Pt 1):C814-21. PubMed ID: 1659210
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Proton-sulfate co-transport: mechanism of H+ and sulfate addition to the chloride transporter of human red blood cells.
    Milanick MA, Gunn RB.
    J Gen Physiol; 1982 Jan; 79(1):87-113. PubMed ID: 7061989
    [Abstract] [Full Text] [Related]

  • 5. Modification of a carboxyl group that appears to cross the permeability barrier in the red blood cell anion transporter.
    Jennings ML, Al-Rhaiyel S.
    J Gen Physiol; 1988 Aug; 92(2):161-78. PubMed ID: 3171537
    [Abstract] [Full Text] [Related]

  • 6. Effects of membrane potential on electrically silent transport. Potential-independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein.
    Jennings ML, Schulz RK, Allen M.
    J Gen Physiol; 1990 Nov; 96(5):991-1012. PubMed ID: 2280255
    [Abstract] [Full Text] [Related]

  • 7. Anion transport systems in the plasma membrane of vertebrate cells.
    Hoffmann EK.
    Biochim Biophys Acta; 1986 Jun 12; 864(1):1-31. PubMed ID: 3521744
    [Abstract] [Full Text] [Related]

  • 8. Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites?
    Milanick MA, Gunn RB.
    Am J Physiol; 1986 Jun 12; 250(6 Pt 1):C955-69. PubMed ID: 3013020
    [Abstract] [Full Text] [Related]

  • 9. Electrogenic H(+)-regulated sulfate-chloride exchange in lobster hepatopancreatic brush-border membrane vesicles.
    Cattey MA, Gerencser GA, Ahearn GA.
    Am J Physiol; 1992 Feb 12; 262(2 Pt 2):R255-62. PubMed ID: 1539734
    [Abstract] [Full Text] [Related]

  • 10. Characterization of the Band 3 substrate site in human red cell ghosts by NDS-TEMPO, a disulfonatostilbene spin probe: the function of protons in NDS-TEMPO and substrate-anion binding in relation to anion transport.
    Kaufmann E, Eberl G, Schnell KF.
    J Membr Biol; 1986 Feb 12; 91(2):129-46. PubMed ID: 3018256
    [Abstract] [Full Text] [Related]

  • 11. The relationship between anion exchange and net anion flow across the human red blood cell membrane.
    Knauf PA, Fuhrmann GF, Rothstein S, Rothstein A.
    J Gen Physiol; 1977 Mar 12; 69(3):363-86. PubMed ID: 15047
    [Abstract] [Full Text] [Related]

  • 12. Sulfate transport in human neutrophils.
    Simchowitz L, Davis AO.
    J Gen Physiol; 1989 Jul 12; 94(1):95-124. PubMed ID: 2478661
    [Abstract] [Full Text] [Related]

  • 13. Functional evidence for a pH sensor of erythrocyte K-Cl cotransport through inhibition by internal protons and diethylpyrocarbonate.
    Lauf PK, Adragna NC.
    Cell Physiol Biochem; 1998 Jul 12; 8(1-2):46-60. PubMed ID: 9547019
    [Abstract] [Full Text] [Related]

  • 14. Sulfate transport in human lung fibroblasts (IMR-90): effect of pH and anions.
    Elgavish A, Meezan E.
    Am J Physiol; 1989 Mar 12; 256(3 Pt 1):C486-94. PubMed ID: 2923189
    [Abstract] [Full Text] [Related]

  • 15. Carrier-mediated sulfate transport in human ureteral epithelial cells cultured in serum-free medium.
    Elgavish A, Wille JJ, Rahemtulla F, Debro L.
    Am J Physiol; 1991 Nov 12; 261(5 Pt 1):C916-26. PubMed ID: 1951676
    [Abstract] [Full Text] [Related]

  • 16. Rapid electrogenic sulfate-chloride exchange mediated by chemically modified band 3 in human erythrocytes.
    Jennings ML.
    J Gen Physiol; 1995 Jan 12; 105(1):21-47. PubMed ID: 7537324
    [Abstract] [Full Text] [Related]

  • 17. Proton fluxes associated with the Ca pump in human red blood cells.
    Milanick MA.
    Am J Physiol; 1990 Mar 12; 258(3 Pt 1):C552-62. PubMed ID: 2156439
    [Abstract] [Full Text] [Related]

  • 18. Phosphate transport in human red blood cells: concentration dependence and pH dependence of the unidirectional phosphate flux at equilibrium conditions.
    Schnell KF, Besl E, von der Mosel R.
    J Membr Biol; 1981 Mar 12; 61(3):173-92. PubMed ID: 7277470
    [Abstract] [Full Text] [Related]

  • 19. Asymmetry in the mechanism for anion exchange in human red blood cell membranes. Evidence for reciprocating sites that react with one transported anion at a time.
    Gunn RB, Fröhlich O.
    J Gen Physiol; 1979 Sep 12; 74(3):351-74. PubMed ID: 479826
    [Abstract] [Full Text] [Related]

  • 20. Chloride net efflux from intact erythrocytes under slippage conditions. Evidence for a positive charge on the anion binding/transport site.
    Fröhlich O, Leibson C, Gunn RB.
    J Gen Physiol; 1983 Jan 12; 81(1):127-52. PubMed ID: 6833995
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.