These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


229 related items for PubMed ID: 6090035

  • 61. Vasodilator effects of sodium nitroprusside, levcromakalim and their combination in isolated rat aorta.
    Pérez-Vizcaíno F, Cogolludo AL, Zaragozá-Arnáez F, Fajardo S, Ibarra M, López-López JG, Tamargo J.
    Br J Pharmacol; 1999 Dec; 128(7):1419-26. PubMed ID: 10602320
    [Abstract] [Full Text] [Related]

  • 62. Nitric oxide relaxes bovine ciliary muscle contracted by carbachol through elevation of cyclic GMP.
    Kamikawatoko S, Tokoro T, Ishida A, Masuda H, Hamasaki H, Sato J, Azuma H.
    Exp Eye Res; 1998 Jan; 66(1):1-7. PubMed ID: 9533825
    [Abstract] [Full Text] [Related]

  • 63. Endothelium-dependent inhibitory effects of acetylcholine, adenosine triphosphate, thrombin and arachidonic acid in the canine femoral artery.
    De Mey JG, Claeys M, Vanhoutte PM.
    J Pharmacol Exp Ther; 1982 Jul; 222(1):166-73. PubMed ID: 6806467
    [Abstract] [Full Text] [Related]

  • 64. Inhibitory effect of aclarubicin on endothelium-dependent relaxation of rat aorta.
    Wakabayashi I, Sakamoto K, Hatake K.
    Pharmacol Toxicol; 1991 Mar; 68(3):187-91. PubMed ID: 1647527
    [Abstract] [Full Text] [Related]

  • 65. Negative regulation of rho signaling by insulin and its impact on actin cytoskeleton organization in vascular smooth muscle cells: role of nitric oxide and cyclic guanosine monophosphate signaling pathways.
    Begum N, Sandu OA, Duddy N.
    Diabetes; 2002 Jul; 51(7):2256-63. PubMed ID: 12086958
    [Abstract] [Full Text] [Related]

  • 66. Endothelium-derived relaxing factor alters calcium fluxes in rabbit aorta: a cyclic guanosine monophosphate-mediated effect.
    Collins P, Griffith TM, Henderson AH, Lewis MJ.
    J Physiol; 1986 Dec; 381():427-37. PubMed ID: 3498027
    [Abstract] [Full Text] [Related]

  • 67. Comparison of the vascular relaxant effects of ATP-dependent K+ channel openers on aorta and pulmonary artery isolated from spontaneously hypertensive and Wistar-Kyoto rats.
    Kwan YW, To KW, Lau WM, Tsang SH.
    Eur J Pharmacol; 1999 Jan 22; 365(2-3):241-51. PubMed ID: 9988108
    [Abstract] [Full Text] [Related]

  • 68. Effects of colforsin, trequinsin and isoprenaline on norepinephrine-induced contractions and cyclic nucleotide levels of isolated vascular tissue.
    Linz W, Wiemer G, Schölkens BA.
    Arzneimittelforschung; 1988 Feb 22; 38(2):240-3. PubMed ID: 2835960
    [Abstract] [Full Text] [Related]

  • 69. A xanthine-based KMUP-1 with cyclic GMP enhancing and K(+) channels opening activities in rat aortic smooth muscle.
    Wu BN, Lin RJ, Lin CY, Shen KP, Chiang LC, Chen IJ.
    Br J Pharmacol; 2001 Sep 22; 134(2):265-74. PubMed ID: 11564644
    [Abstract] [Full Text] [Related]

  • 70. Effects of nesfatin-1 on atrial contractility and thoracic aorta reactivity in male rats.
    Barutcigil A, Tasatargil A.
    Clin Exp Hypertens; 2018 Sep 22; 40(5):414-420. PubMed ID: 29027818
    [Abstract] [Full Text] [Related]

  • 71. Possible mechanisms of inhibition with atropine against noradrenaline-induced contraction in the rabbit aorta.
    Satake N, Kiyoto S, Shibata S, Gandhi V, Jones DJ, Morikawa M.
    Br J Pharmacol; 1992 Oct 22; 107(2):553-8. PubMed ID: 1330185
    [Abstract] [Full Text] [Related]

  • 72. Isosorbide 5-mononitrate effects on isolated rabbit aorta and vena cava: relationship between cyclic GMP and relaxation of vascular smooth muscle.
    Matsuoka I, Sakurai K, Nakanishi H.
    Eur J Pharmacol; 1985 Nov 26; 118(1-2):155-61. PubMed ID: 3002809
    [Abstract] [Full Text] [Related]

  • 73. Mechanisms of calcium relaxation of vascular smooth muscle.
    Wu CC, Bohr DF.
    Am J Physiol; 1991 Nov 26; 261(5 Pt 2):H1411-6. PubMed ID: 1951728
    [Abstract] [Full Text] [Related]

  • 74. Endothelium-dependent relaxation of the pig aorta: relationship to stimulation of 86Rb efflux from isolated endothelial cells.
    Gordon JL, Martin W.
    Br J Pharmacol; 1983 Jun 26; 79(2):531-41. PubMed ID: 6418245
    [Abstract] [Full Text] [Related]

  • 75. Mechanisms underlying the hydrogen peroxide-induced, endothelium-independent relaxation of the norepinephrine-contraction in guinea-pig aorta.
    Fujimoto S, Mori M, Tsushima H.
    Eur J Pharmacol; 2003 Jan 10; 459(1):65-73. PubMed ID: 12505535
    [Abstract] [Full Text] [Related]

  • 76. Impaired cyclic nucleotide-mediated vasorelaxation may contribute to closure of the human umbilical artery after birth.
    Renowden S, Edwards DH, Griffith TM.
    Br J Pharmacol; 1992 Jun 10; 106(2):348-53. PubMed ID: 1327377
    [Abstract] [Full Text] [Related]

  • 77. Impairment of endothelium-dependent relaxation and changes in levels of cyclic GMP in aorta from streptozotocin-induced diabetic rats.
    Kamata K, Miyata N, Kasuya Y.
    Br J Pharmacol; 1989 Jun 10; 97(2):614-8. PubMed ID: 2547480
    [Abstract] [Full Text] [Related]

  • 78. Modulation of agonist-induced calcium mobilisation in bovine aortic endothelial cells by phorbol myristate acetate and cyclic AMP but not cyclic GMP.
    Buchan KW, Martin W.
    Br J Pharmacol; 1991 Oct 10; 104(2):361-6. PubMed ID: 1665733
    [Abstract] [Full Text] [Related]

  • 79. Role of cyclic-GMP in relaxations of vascular smooth muscle.
    Murad F, Rapoport RM, Fiscus R.
    J Cardiovasc Pharmacol; 1985 Oct 10; 7 Suppl 3():S111-8. PubMed ID: 2409383
    [Abstract] [Full Text] [Related]

  • 80. Role of cyclic AMP- and cyclic GMP-phosphodiesterases in the control of cyclic nucleotide levels and smooth muscle tone in rat isolated aorta. A study with selective inhibitors.
    Schoeffter P, Lugnier C, Demesy-Waeldele F, Stoclet JC.
    Biochem Pharmacol; 1987 Nov 15; 36(22):3965-72. PubMed ID: 2825708
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.