These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
60 related items for PubMed ID: 6095566
1. Further studies on the biochemical characterization of the MC-29 virus derived transplantable hepatoma (VTH). II. Modification of cyclic adenosine-3',5'-monophosphate levels by catecholamines, glucagon and Vinca alkaloids in normal chicken liver and VTH. Gyapay G, Lapis E, Jeney A, Lapis K. Acta Biol Hung; 1984; 35(1):35-41. PubMed ID: 6095566 [Abstract] [Full Text] [Related]
2. Further studies on the biochemical characterization of the MC-29 virus derived transplantable hepatoma (VTH). I. Binding of 3H-cortisol to cytoplasmic receptor and DNA. Kovalszky I, Jeney A, Lapis K, Bencsáth M. Acta Biol Hung; 1984; 35(1):27-34. PubMed ID: 6239473 [Abstract] [Full Text] [Related]
3. The regulation of cyclic AMP levels in cultured MH1C1 rat hepatoma cells and in solid tumours derived from MH1C1 cell inoculates. Brønstad GO, Gladhaug IP, Haffner F, Rugstad HE, Christoffersen T. Anticancer Res; 1987; 7(2):155-60. PubMed ID: 3035996 [Abstract] [Full Text] [Related]
4. Chromatin alterations and gene function disorder in MC-29 virus-derived hepatoma. Jeney A, Kovalszky I, Gyapay G, Lapis K, Suba Z. J Toxicol Environ Health; 1979; 5(2-3):509-16. PubMed ID: 224207 [Abstract] [Full Text] [Related]
5. Mechanism of the impairment of the glucagon-stimulated phosphoenolpyruvate carboxykinase gene expression by interleukin-6 in rat hepatocytes: inhibition of the increase in cyclic 3',5' adenosine monophosphate and the downstream cyclic 3',5' adenosine monophosphate action. Christ B, Nath A, Jungermann K. Hepatology; 1997 Jul; 26(1):73-80. PubMed ID: 9214454 [Abstract] [Full Text] [Related]
6. Anomalous adenosine cyclic 3':5'-monophosphate responses to glucagon in patients with hepatocellular carcinoma. Pun KK, Ho PW, Yeung RT. Cancer Res; 1986 Apr; 46(4 Pt 2):2152-4. PubMed ID: 3004721 [Abstract] [Full Text] [Related]
7. Effect of glucagon on amino acid transport and cyclic adenosine 3':5'-monophosphate production in rat hepatoma cell line McA-RH 8994 in culture. Kelley DS. Cancer Res; 1982 Aug; 42(8):3116-9. PubMed ID: 6284359 [No Abstract] [Full Text] [Related]
9. Regulation of urea cycle enzymes in transplantable hepatomas and in the livers of tumor-bearing rats and humans. Brebnor LD, Grimm J, Balinsky JB. Cancer Res; 1981 Jul; 41(7):2692-9. PubMed ID: 6265064 [Abstract] [Full Text] [Related]
10. The role of catecholamines and glucagon on serum and liver metallothionein response to restraint stress. Hidalgo J, Garvey JS, Armario A. Rev Esp Fisiol; 1987 Dec; 43(4):433-7. PubMed ID: 3448709 [Abstract] [Full Text] [Related]
12. Biochemical behavior of MC-29 virus-induced transplantable chicken hepatoma. Prajda N, Eckhardt S, Suba Z, Lapis K. J Toxicol Environ Health; 1979 Dec; 5(2-3):503-8. PubMed ID: 224206 [Abstract] [Full Text] [Related]
13. Ontogeny of glucagon and isoproterenol induced cyclic 3'-5' adenosine monophosphate production in adipocytes isolated from the inguinal adipose tissue of developing rats. Gaben AM, Jahchan T, Swierczewski W, Rosselin G. J Dev Physiol; 1982 Feb; 4(1):75-83. PubMed ID: 6179979 [Abstract] [Full Text] [Related]
14. The pancreatohepatorenal cAMP-adenosine mechanism. Jackson EK, Mi Z, Zacharia LC, Tofovic SP, Dubey RK. J Pharmacol Exp Ther; 2007 May; 321(2):799-809. PubMed ID: 17314200 [Abstract] [Full Text] [Related]
15. Increase of cyclic adenosine 3':5'-monophosphate concentration in transplantable lymphoma cells by vinca alkaloids. Kotani M, Koizumi Y, Yamada T, Kawasaki A, Akabane T. Cancer Res; 1978 Sep; 38(9):3094-9. PubMed ID: 209896 [No Abstract] [Full Text] [Related]
16. [Insulin and glucagon receptors in the liver. Their regulation]. Broer Y. Med Chir Dig; 1981 Sep; 10(8):669-71. PubMed ID: 6279980 [No Abstract] [Full Text] [Related]
17. PGE1-independent MDCK cells have elevated intracellular cyclic AMP but retain the growth stimulatory effects of glucagon and epidermal growth factor in serum-free medium. Taub M, Devis PE, Grohol SH. J Cell Physiol; 1984 Jul; 120(1):19-28. PubMed ID: 6203919 [Abstract] [Full Text] [Related]
18. The phosphodiesterase type 4 (PDE4) inhibitor CP-80,633 elevates plasma cyclic AMP levels and decreases tumor necrosis factor-alpha (TNFalpha) production in mice: effect of adrenalectomy. Cheng JB, Watson JW, Pazoles CJ, Eskra JD, Griffiths RJ, Cohan VL, Turner CR, Showell HJ, Pettipher ER. J Pharmacol Exp Ther; 1997 Feb; 280(2):621-6. PubMed ID: 9023272 [Abstract] [Full Text] [Related]
19. Bacterial toxins and glucagon in liver cAMP regulation: a physiopathological role in liver diseases? Scevola D, Barbarini G, Marone P, Casciarri I, Bernardi R, Magliulo E. Boll Ist Sieroter Milan; 1980 Feb; 59(6):655-61. PubMed ID: 6263294 [Abstract] [Full Text] [Related]
20. Differences in dihydroergotamine antagonism of glucose release by catecholamines, glucagon and adenosine 3',5'-monophosphate in rabbit liver slices. Chan PS, Ellis S, Mühlbachová E. Br J Pharmacol; 1978 Aug; 63(4):593-7. PubMed ID: 210874 [Abstract] [Full Text] [Related] Page: [Next] [New Search]