These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


89 related items for PubMed ID: 6097319

  • 1. Ionic channels in a line of embryonal carcinoma cells induced to undergo neuronal differentiation.
    Ebihara L, Speers WC.
    Biophys J; 1984 Dec; 46(6):827-30. PubMed ID: 6097319
    [Abstract] [Full Text] [Related]

  • 2. Development of ion channels and neurofilaments during neuronal differentiation of mouse embryonal carcinoma cell lines.
    Kubo Y.
    J Physiol; 1989 Feb; 409():497-523. PubMed ID: 2479740
    [Abstract] [Full Text] [Related]

  • 3. Sodium butyrate induces histone hyperacetylation and differentiation of murine embryonal carcinoma cells.
    McCue PA, Gubler ML, Sherman MI, Cohen BN.
    J Cell Biol; 1984 Feb; 98(2):602-8. PubMed ID: 6141173
    [Abstract] [Full Text] [Related]

  • 4. Development of ionic channels during mouse neuronal differentiation.
    Simonneau M, Distasi C, Tauc L, Poujeol C.
    J Physiol (Paris); 1985 Feb; 80(4):312-20. PubMed ID: 2422359
    [Abstract] [Full Text] [Related]

  • 5. Preliminary characterisation of a murine embryonal carcinoma cell derived growth promoting activity.
    Stern PL, Priddle JD.
    Cell Biol Int Rep; 1984 Jul; 8(7):579-85. PubMed ID: 6534382
    [Abstract] [Full Text] [Related]

  • 6. A comparative study of the cell cycles of nullipotent and multipotent embryonal carcinoma cell lines during exponential growth.
    Sennerstam R, Strömberg JO.
    Dev Biol; 1984 May; 103(1):221-9. PubMed ID: 6201406
    [Abstract] [Full Text] [Related]

  • 7. Fluorescence polarization of six membrane probes in embryonal carcinoma cells after differentiation as measured on a FACS II cell sorter.
    Schaap GH, de Josselin de Jong JE, Jongkind JF.
    Cytometry; 1984 Mar; 5(2):188-93. PubMed ID: 6201328
    [Abstract] [Full Text] [Related]

  • 8. The cell cycle, cell death, and cell morphology during retinoic acid-induced differentiation of embryonal carcinoma cells.
    Mummery CL, van den Brink CE, van der Saag PT, de Laat SW.
    Dev Biol; 1984 Aug; 104(2):297-307. PubMed ID: 6745486
    [Abstract] [Full Text] [Related]

  • 9. Retinoic acid-induced neural differentiation of embryonal carcinoma cells.
    Jones-Villeneuve EM, Rudnicki MA, Harris JF, McBurney MW.
    Mol Cell Biol; 1983 Dec; 3(12):2271-9. PubMed ID: 6656766
    [Abstract] [Full Text] [Related]

  • 10. P19 embryonal carcinoma cells: a suitable model system for cardiac electrophysiological differentiation at the molecular and functional level.
    van der Heyden MA, van Kempen MJ, Tsuji Y, Rook MB, Jongsma HJ, Opthof T.
    Cardiovasc Res; 2003 May 01; 58(2):410-22. PubMed ID: 12757875
    [Abstract] [Full Text] [Related]

  • 11. Production of immunoreactive calcitonin and parathyroid hormone by embryonal carcinoma cells: alteration with retinoic acid-induced differentiation.
    Evain-Brion D, Binet E, Donnadieu M, Laurent P, Anderson WB.
    Dev Biol; 1984 Aug 01; 104(2):406-12. PubMed ID: 6745491
    [Abstract] [Full Text] [Related]

  • 12. Induced muscle differentiation in an embryonal carcinoma cell line.
    Edwards MK, Harris JF, McBurney MW.
    Mol Cell Biol; 1983 Dec 01; 3(12):2280-6. PubMed ID: 6656767
    [Abstract] [Full Text] [Related]

  • 13. Complementation analyses of differentiation-defective embryonal carcinoma cells.
    McCue PA, Gubler ML, Maffei L, Sherman MI.
    Dev Biol; 1984 Jun 01; 103(2):399-408. PubMed ID: 6144604
    [Abstract] [Full Text] [Related]

  • 14. Single channel currents in mouse embryonal multipotential carcinoma cells.
    Simonneau M, Eddé B, Nicolas JF, Jakob H.
    Cell Differ; 1985 Jul 01; 17(1):21-8. PubMed ID: 2411427
    [Abstract] [Full Text] [Related]

  • 15. Expression of laminin and fibronectin in endodermal and neural differentiation of F9 embryonal carcinoma cells.
    Wartiovaara J, Liesi P, Rechardt L.
    Prog Clin Biol Res; 1984 Jul 01; 151():233-47. PubMed ID: 6473367
    [No Abstract] [Full Text] [Related]

  • 16. Classification of potassium and chlorine ionic currents in retinal ganglion cell line (RGC-5) by whole-cell patch clamp.
    Wang SJ, Xie LH, Heng B, Liu YQ.
    Vis Neurosci; 2012 Nov 01; 29(6):275-82. PubMed ID: 23110755
    [Abstract] [Full Text] [Related]

  • 17. Electrophysiological characterization of neural stem/progenitor cells during in vitro differentiation: study with an immortalized neuroectodermal cell line.
    Jelitai M, Anderová M, Chvátal A, Madarász E.
    J Neurosci Res; 2007 Jun 01; 85(8):1606-17. PubMed ID: 17455290
    [Abstract] [Full Text] [Related]

  • 18. Differentiation of ionic currents in CNS progenitor cells: dependence upon substrate attachment and epidermal growth factor.
    Feldman DH, Thinschmidt JS, Peel AL, Papke RL, Reier PJ.
    Exp Neurol; 1996 Aug 01; 140(2):206-17. PubMed ID: 8690063
    [Abstract] [Full Text] [Related]

  • 19. Voltage-dependent ionic channels in differentiating neural precursor cells collected from adult mouse brains six hours post-mortem.
    Bellardita C, Bolzoni F, Sorosina M, Marfia G, Carelli S, Gorio A, Formenti A.
    J Neurosci Res; 2012 Apr 01; 90(4):751-8. PubMed ID: 22183987
    [Abstract] [Full Text] [Related]

  • 20. Induction of differentiation in mouse embryonal carcinoma cell lines by coculture with rat glioma cells.
    Allin EP.
    Cell Mol Biol; 1984 Apr 01; 30(4):377-84. PubMed ID: 6488239
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.