These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 6114949

  • 1. The stereochemical course of the ribosome-dependent GTPase reaction of elongation factor G from Escherichia coli.
    Webb MR, Eccleston JF.
    J Biol Chem; 1981 Aug 10; 256(15):7734-7. PubMed ID: 6114949
    [Abstract] [Full Text] [Related]

  • 2. Characterization of the GTPase reaction of elongation factor Tu. Determination of the stereochemical course in the presence of antibiotic X5108.
    Eccleston JF, Webb MR.
    J Biol Chem; 1982 May 10; 257(9):5046-9. PubMed ID: 6121805
    [Abstract] [Full Text] [Related]

  • 3. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. I. Factor-independent GTPase and ATPase of ribosomal preparations].
    Kakhniashvili DG, Smailov SK, Gavrilova LP.
    Biokhimiia; 1980 Nov 10; 45(11):1999-2012. PubMed ID: 6113012
    [Abstract] [Full Text] [Related]

  • 4. The mechanism of guanosine nucleotide hydrolysis by p21 c-Ha-ras. The stereochemical course of the GTPase reaction.
    Feuerstein J, Goody RS, Webb MR.
    J Biol Chem; 1989 Apr 15; 264(11):6188-90. PubMed ID: 2539374
    [Abstract] [Full Text] [Related]

  • 5. Modulation by monovalent and divalent cations of the guanosine-5'-triphosphatase activity dependent on elongation factor Tu.
    Ivell R, Sander G, Parmeggiani A.
    Biochemistry; 1981 Nov 24; 20(24):6852-9. PubMed ID: 6119108
    [No Abstract] [Full Text] [Related]

  • 6. Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2.
    Nygård O, Nilsson L.
    Eur J Biochem; 1989 Feb 15; 179(3):603-8. PubMed ID: 2537725
    [Abstract] [Full Text] [Related]

  • 7. The elongation factor G carries a catalytic site for GTP hydrolysis, which is revealed by using 2-propanol in the absence of ribosomes.
    De Vendittis E, Masullo M, Bocchini V.
    J Biol Chem; 1986 Apr 05; 261(10):4445-50. PubMed ID: 3007457
    [Abstract] [Full Text] [Related]

  • 8. The stereochemical course of phosphoric residue transfer catalyzed by beef heart mitochondrial ATPase.
    Webb MR, Grubmeyer C, Penefsky HS, Trentham DR.
    J Biol Chem; 1980 Dec 25; 255(24):11637-9. PubMed ID: 6449510
    [Abstract] [Full Text] [Related]

  • 9. Chemical modification in situ of Escherichia coli 50 S ribosomal proteins by the site-specific reagent pyridoxal phosphate. Inactivation of the elongation factor-G-dependent GTPase and of the association with the small ribosomal subunit.
    Ohsawa H, Ohsawa E, Giovane A, Gualerzi C.
    J Biol Chem; 1983 Jan 10; 258(1):157-62. PubMed ID: 6129249
    [No Abstract] [Full Text] [Related]

  • 10. Effect of kirromycin on elongation factor Tu. Location of the catalytic center for ribosome-elongation-factor-Tu GTPase activity on the elongation factor.
    Chinali G, Wolf H, Parmeggiani A.
    Eur J Biochem; 1977 May 02; 75(1):55-65. PubMed ID: 193689
    [No Abstract] [Full Text] [Related]

  • 11. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome.
    Rodnina MV, Savelsbergh A, Katunin VI, Wintermeyer W.
    Nature; 1997 Jan 02; 385(6611):37-41. PubMed ID: 8985244
    [Abstract] [Full Text] [Related]

  • 12. Guanosinetriphosphatase activity dependent on elongation factor Tu and ribosomal protein L7/L12.
    Donner D, Villems R, Liljas A, Kurland CG.
    Proc Natl Acad Sci U S A; 1978 Jul 02; 75(7):3192-5. PubMed ID: 210452
    [Abstract] [Full Text] [Related]

  • 13. The coupling with polypeptide synthesis of the GTPase activity dependent on elongation factor G.
    Chinali G, Parmeggiani A.
    J Biol Chem; 1980 Aug 10; 255(15):7455-9. PubMed ID: 6104671
    [Abstract] [Full Text] [Related]

  • 14. Differential modulation of the elongation-factor-G GTPase activity by tRNA bound to the ribosomal A-site or P-site.
    Chinali G, Parmeggiani A.
    Eur J Biochem; 1982 Jul 10; 125(2):415-21. PubMed ID: 6180894
    [No Abstract] [Full Text] [Related]

  • 15. The GTPase activity of elongation factor Tu and the 3'-terminal end of aminoacyl-tRNA.
    Parlato G, Guesnet J, Crechet JB, Parmeggiani A.
    FEBS Lett; 1981 Mar 23; 125(2):257-60. PubMed ID: 6112171
    [No Abstract] [Full Text] [Related]

  • 16. Elongation factor 1 from the silk gland of silkworm. Effect of EF-1b on EF-1a- and ribosome-dependent GTPase activity.
    Murakami K, Ejiri S, Katsumata T.
    FEBS Lett; 1978 Aug 15; 92(2):255-7. PubMed ID: 212299
    [No Abstract] [Full Text] [Related]

  • 17. Characterization of the elongation factors from calf brain. 3. Properties of the GTPase activity of EF-1 alpha and mode of action of kirromycin.
    Crechet JB, Parmeggiani A.
    Eur J Biochem; 1986 Dec 15; 161(3):655-60. PubMed ID: 3024979
    [Abstract] [Full Text] [Related]

  • 18. The stereochemical course of phosphoric residue transfer during the myosin ATPase reaction.
    Webb MR, Trentham DR.
    J Biol Chem; 1980 Sep 25; 255(18):8629-32. PubMed ID: 6447698
    [Abstract] [Full Text] [Related]

  • 19. Activity of the 30-S CsCl core in elongation-factor-dependent GTP hydrolysis.
    Sander G, Marsh RC, Parmeggiani A.
    Eur J Biochem; 1976 Jan 02; 61(1):317-23. PubMed ID: 173554
    [Abstract] [Full Text] [Related]

  • 20. The stereochemical course of phosphoric residue transfer catalyzed by sarcoplasmic reticulum ATPase.
    Webb MR, Trentham DR.
    J Biol Chem; 1981 May 25; 256(10):4884-7. PubMed ID: 6112220
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.