These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


405 related items for PubMed ID: 6137559

  • 1. Neural regulation on the active sodium-potassium transport in hypokalaemic rat skeletal muscles.
    Akaike N, Hirata A, Kiyohara T, Oyama Y.
    J Physiol; 1983 Aug; 341():245-55. PubMed ID: 6137559
    [Abstract] [Full Text] [Related]

  • 2. Quantitative in vivo studies on the active Na-K transports in "tonic" muscle of the hypokalemic rat.
    Akaike N, Kiyohara T, Oyama Y.
    Jpn J Physiol; 1983 Aug; 33(3):323-36. PubMed ID: 6314005
    [Abstract] [Full Text] [Related]

  • 3. Active sodium-potassium transports in skeletal muscles of deoxycorticosterone hypertensive rats.
    Nagaoka R, Yamashita S, Maruyama T, Akaike N.
    Brain Res; 1987 May 05; 410(2):283-91. PubMed ID: 3036309
    [Abstract] [Full Text] [Related]

  • 4. Effects of denervation on sodium, potassium and [3H]ouabain binding in muscles of normal and potassium-depleted rats.
    Clausen T, Kjeldsen K, Nørgaard A.
    J Physiol; 1983 Dec 05; 345():123-34. PubMed ID: 6663495
    [Abstract] [Full Text] [Related]

  • 5. Effects of hypothalamic lesions on active sodium-potassium transport in the extensor digitorum longus muscles of hypokalemic rat.
    Katafuchi T, Yoshimatsu H, Oomura Y, Akaike N.
    Brain Res Bull; 1986 Aug 05; 17(2):151-3. PubMed ID: 3021289
    [Abstract] [Full Text] [Related]

  • 6. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD, James JH, Luchette FA, Wang L, Friend LA, King JK, Evans JM, George MA, Fischer JE.
    J Surg Res; 2001 Aug 05; 99(2):235-44. PubMed ID: 11469892
    [Abstract] [Full Text] [Related]

  • 7. CNS control of active sodium transport in muscle during progressive hypokalemia in the rat.
    Akaike N.
    Brain Res; 1982 May 13; 239(2):575-81. PubMed ID: 6284307
    [Abstract] [Full Text] [Related]

  • 8. The significance of active Na+,K+ transport in the maintenance of contractility in rat skeletal muscle.
    Nielsen OB, Clausen T.
    Acta Physiol Scand; 1996 Jun 13; 157(2):199-209. PubMed ID: 8800360
    [Abstract] [Full Text] [Related]

  • 9. Active transport of sodium and potassium in mammalian skeletal muscle and its modification by nerve and by cholinergic and adrenergic agents.
    Dockry M, Kernan RP, Tangney A.
    J Physiol; 1966 Sep 13; 186(1):187-200. PubMed ID: 5914252
    [Abstract] [Full Text] [Related]

  • 10. Effect of age, potassium depletion and denervation on specific displaceable [3H]ouabain binding in rat skeletal muscle in vivo.
    Clausen T, Hansen O, Kjeldsen K, Nørgaard A.
    J Physiol; 1982 Dec 13; 333():367-81. PubMed ID: 6304285
    [Abstract] [Full Text] [Related]

  • 11. Effects of semi-starvation and potassium deficiency on the concentration of [3H]ouabain-binding sites and sodium and potassium contents in rat skeletal muscle.
    Kjeldsen K, Everts ME, Clausen T.
    Br J Nutr; 1986 Nov 13; 56(3):519-32. PubMed ID: 3676228
    [Abstract] [Full Text] [Related]

  • 12. Complement activation alters myocellular sodium homeostasis during polymicrobial sepsis.
    Wang W, Okamoto K, Jacobs DO.
    Crit Care Med; 2002 Mar 13; 30(3):684-91. PubMed ID: 11990934
    [Abstract] [Full Text] [Related]

  • 13. Effect of denervation on glucose uptake in rat soleus and extensor digitorum longus muscles.
    Shoji S.
    Muscle Nerve; 1986 Jan 13; 9(1):69-72. PubMed ID: 3951482
    [Abstract] [Full Text] [Related]

  • 14. Changes of intracellular electrolyte contents in rat skeletal muscle during body suspension.
    Nagaoka R, Mizuno M, Yamashita S, Akaike N.
    Comp Biochem Physiol A Physiol; 1995 Apr 13; 110(4):341-6. PubMed ID: 7735902
    [Abstract] [Full Text] [Related]

  • 15. Effect of thyroid hormones on acetylcholinesterase mRNA levels in the slow soleus and fast extensor digitorum longus muscles of the rat.
    Pregelj P, Crne-Finderle N, Sketelj J.
    Neuroscience; 2003 Apr 13; 116(3):657-67. PubMed ID: 12573709
    [Abstract] [Full Text] [Related]

  • 16. beta-Adrenergic effect on Na+-K+ transport in rat skeletal muscle.
    Rogus EM, Cheng LC, Zierler K.
    Biochim Biophys Acta; 1977 Jan 21; 464(2):347-55. PubMed ID: 188472
    [Abstract] [Full Text] [Related]

  • 17. Effects of electrical stimulation and insulin on Na+-K+-ATPase ([3H]ouabain binding) in rat skeletal muscle.
    McKenna MJ, Gissel H, Clausen T.
    J Physiol; 2003 Mar 01; 547(Pt 2):567-80. PubMed ID: 12562912
    [Abstract] [Full Text] [Related]

  • 18. Activation of the Na-K pump by intracellular Na in rat slow- and fast-twitch muscle.
    Everts ME, Clausen T.
    Acta Physiol Scand; 1992 Aug 01; 145(4):353-62. PubMed ID: 1326854
    [Abstract] [Full Text] [Related]

  • 19. Hypothalamus and sodium-potassium pump activity in skeletal muscles of DOCA-hypertensive rats.
    Katafuchi T, Oomura Y, Maruyama T, Akaike N.
    Am J Physiol; 1987 Sep 01; 253(3 Pt 2):R396-401. PubMed ID: 2820248
    [Abstract] [Full Text] [Related]

  • 20. Effects of nerve cross-union on rat intracellular potassium in fast-twitch and slow-twitch rat muscles.
    Hoh JF, Salafsky B.
    J Physiol; 1971 Jul 01; 216(1):171-9. PubMed ID: 5558348
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.