These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


114 related items for PubMed ID: 6143597

  • 1. In vivo release by vagal stimulation of L-[3H] glutamic acid in the nucleus tractus solitarius preloaded with L-[3H] glutamine.
    Granata AR, Sved AF, Reis DJ.
    Brain Res Bull; 1984 Jan; 12(1):5-9. PubMed ID: 6143597
    [Abstract] [Full Text] [Related]

  • 2. Release of [3H]L-glutamine acid (L-Glu) and [3H]D-aspartic acid (D-Asp) in the area of nucleus tractus solitarius in vivo produced by stimulation of the vagus nerve.
    Granata AR, Reis DJ.
    Brain Res; 1983 Jan 17; 259(1):77-93. PubMed ID: 6130821
    [Abstract] [Full Text] [Related]

  • 3. Glutamatergic mechanisms in the nucleus tractus solitarius in blood pressure control.
    Talman WT, Granata AR, Reis DJ.
    Fed Proc; 1984 Jan 17; 43(1):39-44. PubMed ID: 6140189
    [Abstract] [Full Text] [Related]

  • 4. Evidence that glutamic acid is the neurotransmitter of baroreceptor afferent terminating in the nucleus tractus solitarius (NTS).
    Reis DJ, Granata AR, Perrone MH, Talman WT.
    J Auton Nerv Syst; 1981 Apr 17; 3(2-4):321-34. PubMed ID: 6115875
    [Abstract] [Full Text] [Related]

  • 5. Biochemical evidence that L-glutamate is a neurotransmitter of primary vagal afferent nerve fibers.
    Perrone MH.
    Brain Res; 1981 Dec 28; 230(1-2):283-93. PubMed ID: 6172183
    [Abstract] [Full Text] [Related]

  • 6. Amino acid neurotransmitters in nucleus tractus solitarius: an in vivo microdialysis study.
    Sved AF, Curtis JT.
    J Neurochem; 1993 Dec 28; 61(6):2089-98. PubMed ID: 7902420
    [Abstract] [Full Text] [Related]

  • 7. Uptake and metabolism of L-[3H]glutamate and L-[3H]glutamine in adult rat cerebellar slices.
    de Barry J, Vincendon G, Gombos G.
    Neurochem Res; 1983 Oct 28; 8(10):1321-35. PubMed ID: 6140648
    [Abstract] [Full Text] [Related]

  • 8. Modulation of spinal nociceptive transmission from nuclei tractus solitarii: a relay for effects of vagal afferent stimulation.
    Ren K, Randich A, Gebhart GF.
    J Neurophysiol; 1990 May 28; 63(5):971-86. PubMed ID: 1972739
    [Abstract] [Full Text] [Related]

  • 9. Electrical stimulation of the vagus increases extracellular glutamate recovered from the nucleus tractus solitarii of the cat by in vivo microdialysis.
    Allchin RE, Batten TF, McWilliam PN, Vaughan PF.
    Exp Physiol; 1994 Mar 28; 79(2):265-8. PubMed ID: 7911674
    [Abstract] [Full Text] [Related]

  • 10. Medullary substrates mediating antinociception produced by electrical stimulation of the vagus.
    Randich A, Aicher SA.
    Brain Res; 1988 Mar 29; 445(1):68-76. PubMed ID: 3365559
    [Abstract] [Full Text] [Related]

  • 11. Projection of nucleus tractus solitarius units influenced by hepatoportal afferent signal to parabrachial nucleus.
    Kobashi M, Adachi A.
    J Auton Nerv Syst; 1986 Jun 29; 16(2):153-8. PubMed ID: 3722718
    [Abstract] [Full Text] [Related]

  • 12. Neurochemical investigation of the afferent pathway from the vagus nerve to the nucleus tractus solitarius in mediating the "satiety syndrome" induced by systemic cholecystokinin.
    Crawley JN.
    Peptides; 1985 Jun 29; 6 Suppl 1():133-7. PubMed ID: 4047976
    [Abstract] [Full Text] [Related]

  • 13. Area postrema: gastric vagal input from proximal stomach and interactions with nucleus tractus solitarius in cat.
    Yuan CS, Barber WD.
    Brain Res Bull; 1993 Jun 29; 30(1-2):119-25. PubMed ID: 8420621
    [Abstract] [Full Text] [Related]

  • 14. Modulation of gastric and arterial pressure by nucleus tractus solitarius in rat.
    Spencer SE, Talman WT.
    Am J Physiol; 1986 Jun 29; 250(6 Pt 2):R996-1002. PubMed ID: 2872821
    [Abstract] [Full Text] [Related]

  • 15. Evidence that L-glutamic acid mediates baroreceptor function in the cat.
    Humphrey SJ, McCall RB.
    Clin Exp Hypertens A; 1984 Jun 29; 6(7):1311-29. PubMed ID: 6147214
    [Abstract] [Full Text] [Related]

  • 16. Neuroanatomical evidence that vagal afferent nerves do not possess a high affinity uptake system for glutamate.
    Sved AF, Backes MG.
    J Auton Nerv Syst; 1992 May 15; 38(3):219-29. PubMed ID: 1351899
    [Abstract] [Full Text] [Related]

  • 17. Lack of change in high affinity glutamate uptake in nucleus tractus solitarius following removal of the nodose ganglion.
    Sved AF.
    Brain Res Bull; 1986 Mar 15; 16(3):325-9. PubMed ID: 2871905
    [Abstract] [Full Text] [Related]

  • 18. Reduced glutamate binding in rat dorsal vagal complex after nodose ganglionectomy.
    Lewis SJ, Verberne AJ, Summers RJ, Beart PM, Cincotta M.
    Brain Res Bull; 1988 Dec 15; 21(6):913-6. PubMed ID: 2906272
    [Abstract] [Full Text] [Related]

  • 19. Involvement of the ventrolateral medulla in the mediation of pressor responses of the rat to afferent vagal stimulation.
    Kubo T.
    Can J Physiol Pharmacol; 1985 Dec 15; 63(12):1612-4. PubMed ID: 2869831
    [Abstract] [Full Text] [Related]

  • 20. Distribution and uptake of glycine, glutamate and gamma-aminobutyric acid in the vagal nuclei and eight other regions of the rat medulla oblongata.
    Siemers ER, Rea MA, Felten DL, Aprison MH.
    Neurochem Res; 1982 Apr 15; 7(4):455-68. PubMed ID: 6125906
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.