These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
341 related items for PubMed ID: 6150486
21. Atriopeptins and nitroprusside provoke opposite changes in cGMP and cAMP levels in human macrophages. Houdijk AP, Adolfs MJ, Bonta IL, De Jonge HR. Eur J Pharmacol; 1990 Apr 25; 179(3):413-7. PubMed ID: 1694768 [Abstract] [Full Text] [Related]
22. Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Förstermann U, Mülsch A, Böhme E, Busse R. Circ Res; 1986 Apr 25; 58(4):531-8. PubMed ID: 2870826 [Abstract] [Full Text] [Related]
23. Comparison of nicorandil-induced relaxation, elevations of cyclic guanosine monophosphate and stimulation of guanylate cyclase with organic nitrate esters. Greenberg SS, Cantor E, Ho E, Walega M. J Pharmacol Exp Ther; 1991 Sep 25; 258(3):1061-71. PubMed ID: 1679847 [Abstract] [Full Text] [Related]
24. cGMP accumulation and gene expression of soluble guanylate cyclase in human vascular tissue. Papapetropoulos A, Cziraki A, Rubin JW, Stone CD, Catravas JD. J Cell Physiol; 1996 May 25; 167(2):213-21. PubMed ID: 8613461 [Abstract] [Full Text] [Related]
25. Atrial natriuretic factor activates membrane-bound guanylate cyclase of chief cells. Cherner JA, Singh G, Naik L. Life Sci; 1990 May 25; 47(7):669-77. PubMed ID: 1976196 [Abstract] [Full Text] [Related]
26. Modification by LY 83583 and methylene blue of relaxation induced by nitric oxide, glyceryl trinitrate, sodium nitroprusside and atriopeptin in aortae of the rat, guinea-pig and rabbit. Kawada T, Ishibashi T, Sasage H, Kato K, Imai S. Gen Pharmacol; 1994 Nov 25; 25(7):1361-71. PubMed ID: 7896047 [Abstract] [Full Text] [Related]
28. Desensitization of guanylate cyclase in nitrate tolerance does not impair endothelium-dependent responses. Mülsch A, Busse R, Bassenge E. Eur J Pharmacol; 1988 Dec 13; 158(3):191-8. PubMed ID: 2908105 [Abstract] [Full Text] [Related]
29. Effects of various phosphodiesterase-inhibitors, forskolin, and sodium nitroprusside on porcine detrusor smooth muscle tonic responses to muscarinergic stimulation and cyclic nucleotide levels in vitro. Truss MC, Uckert S, Stief CG, Kuczyk M, Schulz-Knappe P, Forssmann WG, Jonas U. Neurourol Urodyn; 1996 Dec 13; 15(1):59-70. PubMed ID: 8696357 [Abstract] [Full Text] [Related]
30. The relaxation induced by uroguanylin and the expression of natriuretic peptide receptors in human corpora cavernosa. Sousa CM, Havt A, Santos CF, Arnaud-Batista FJ, Cunha KM, Cerqueira JB, Fonteles MC, Nascimento NR. J Sex Med; 2010 Nov 13; 7(11):3610-9. PubMed ID: 20102442 [Abstract] [Full Text] [Related]
31. Chronic treatment with the anabolic steroid, nandrolone, inhibits vasodilator responses in rabbit aorta. Ferrer M, Encabo A, Marín J, Balfagón G. Eur J Pharmacol; 1994 Feb 03; 252(2):233-41. PubMed ID: 7908882 [Abstract] [Full Text] [Related]
32. Mechanism of atrial natriuretic polypeptide and sodium nitroprusside-induced relaxation in guinea-pig tracheal smooth muscle. Watanabe H, Suzuki K, Takagi K, Satake T. Arzneimittelforschung; 1990 Jul 03; 40(7):771-6. PubMed ID: 1977395 [Abstract] [Full Text] [Related]
33. Inhibition of cGMP mediated relaxation in small rat coronary arteries by block of CA++ activated K+ channels. Price JM, Hellermann A. Life Sci; 1997 Jul 03; 61(12):1185-92. PubMed ID: 9315509 [Abstract] [Full Text] [Related]
34. Endothelium-dependent and nitrovasodilator-induced relaxation of vascular smooth muscle: role of cyclic GMP. Rapoport RM, Murad F. J Cyclic Nucleotide Protein Phosphor Res; 1983 Jul 03; 9(4-5):281-96. PubMed ID: 6147363 [Abstract] [Full Text] [Related]
35. Endothelium-dependent vasodilator-and nitrovasodilator-induced relaxation may be mediated through cyclic GMP formation and cyclic GMP-dependent protein phosphorylation. Rapoport RM, Draznin MB, Murad F. Trans Assoc Am Physicians; 1983 Jul 03; 96():19-30. PubMed ID: 6149646 [No Abstract] [Full Text] [Related]
36. Biochemical mechanisms of atrial natriuretic factor action. Tremblay J, Hamet P. Can J Physiol Pharmacol; 1989 Sep 03; 67(9):1124-9. PubMed ID: 2574629 [Abstract] [Full Text] [Related]
37. Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase. Olesen SP, Drejer J, Axelsson O, Moldt P, Bang L, Nielsen-Kudsk JE, Busse R, Mülsch A. Br J Pharmacol; 1998 Jan 03; 123(2):299-309. PubMed ID: 9489619 [Abstract] [Full Text] [Related]
38. Influence of increase in osmotic pressure with sucrose on relaxation and cyclonucleotides levels in isolated rat aorta. Tabrizchi R. Eur J Pharmacol; 1999 Oct 15; 382(3):177-85. PubMed ID: 10556668 [Abstract] [Full Text] [Related]
39. Brain natriuretic factor. Augmentation of cellular cyclic GMP, activation of particulate guanylate cyclase and receptor binding. Song DL, Kohse KP, Murad F. FEBS Lett; 1988 May 09; 232(1):125-9. PubMed ID: 2896603 [Abstract] [Full Text] [Related]
40. Angiotensin decreases cyclic GMP accumulation produced by atrial natriuretic factor. Smith JB, Lincoln TM. Am J Physiol; 1987 Jul 09; 253(1 Pt 1):C147-50. PubMed ID: 2440311 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]