These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


131 related items for PubMed ID: 6158362

  • 1. Protein degradation in the mouse visual system. I. Degradation of axonally transported and retinal proteins.
    Nixon RA.
    Brain Res; 1980 Oct 27; 200(1):69-83. PubMed ID: 6158362
    [Abstract] [Full Text] [Related]

  • 2. Posttranslational modification of a neurofilament protein during axoplasmic transport: implications for regional specialization of CNS axons.
    Nixon RA, Brown BA, Marotta CA.
    J Cell Biol; 1982 Jul 27; 94(1):150-8. PubMed ID: 6181078
    [Abstract] [Full Text] [Related]

  • 3. Reutilization of precursor following axonal transport of [3H]proline-labeled protein.
    Heacock AM, Agranoff BW.
    Brain Res; 1977 Feb 18; 122(2):243-54. PubMed ID: 65202
    [Abstract] [Full Text] [Related]

  • 4. Multiple calcium-activated neutral proteinases (CANP) in mouse retinal ganglion cell neurons: specificities for endogenous neuronal substrates and comparison to purified brain CANP.
    Nixon RA, Quackenbush R, Vitto A.
    J Neurosci; 1986 May 18; 6(5):1252-63. PubMed ID: 3012011
    [Abstract] [Full Text] [Related]

  • 5. Posttranslational modification of neurofilament proteins by phosphate during axoplasmic transport in retinal ganglion cell neurons.
    Nixon RA, Lewis SE, Marotta CA.
    J Neurosci; 1987 Apr 18; 7(4):1145-58. PubMed ID: 2437257
    [Abstract] [Full Text] [Related]

  • 6. Posttranslational processing of alpha-tubulin during axoplasmic transport in CNS axons.
    Brown BA, Nixon RA, Marotta CA.
    J Cell Biol; 1982 Jul 18; 94(1):159-64. PubMed ID: 6181079
    [Abstract] [Full Text] [Related]

  • 7. Fodrin degradation by calcium-activated neutral proteinase (CANP) in retinal ganglion cell neurons and optic glia: preferential localization of CANP activities in neurons.
    Nixon RA.
    J Neurosci; 1986 May 18; 6(5):1264-71. PubMed ID: 3012012
    [Abstract] [Full Text] [Related]

  • 8. Lack of physiological stimulation induces decreased proteolytic activity in nerve terminals.
    Gustavsson S, Karlsson JO.
    Neurochem Res; 1988 Jul 18; 13(7):633-5. PubMed ID: 2457820
    [Abstract] [Full Text] [Related]

  • 9. Axonal transport of actin: slow component b is the principal source of actin for the axon.
    Black MM, Lasek RJ.
    Brain Res; 1979 Aug 10; 171(3):401-13. PubMed ID: 89886
    [Abstract] [Full Text] [Related]

  • 10. Slow axonal transport mechanisms move neurofilaments relentlessly in mouse optic axons.
    Lasek RJ, Paggi P, Katz MJ.
    J Cell Biol; 1992 May 10; 117(3):607-16. PubMed ID: 1374068
    [Abstract] [Full Text] [Related]

  • 11. Synthesis, axonal transport, and turnover of the high molecular weight microtubule-associated protein MAP 1A in mouse retinal ganglion cells: tubulin and MAP 1A display distinct transport kinetics.
    Nixon RA, Fischer I, Lewis SE.
    J Cell Biol; 1990 Feb 10; 110(2):437-48. PubMed ID: 1688856
    [Abstract] [Full Text] [Related]

  • 12. Turnover of axonally transported phospholipids in nerve endings of retinal ganglion cells.
    Toews AD, Morell P.
    J Neurochem; 1981 Nov 10; 37(5):1316-23. PubMed ID: 6170734
    [Abstract] [Full Text] [Related]

  • 13. Slow component B protein kinetics in optic nerve and tract windows.
    Paggi P, Lasek RJ, Katz MJ.
    Brain Res; 1989 Dec 18; 504(2):223-30. PubMed ID: 2480832
    [Abstract] [Full Text] [Related]

  • 14. Investigation of the axonal transport of three acidic, soluble proteins (14-3-2, 14-3-3, and S-100) in the rabbit visual system.
    Erickson PF, Moore BW.
    J Neurochem; 1980 Jul 18; 35(1):232-41. PubMed ID: 6161216
    [Abstract] [Full Text] [Related]

  • 15. Slow axonal protein transport and visual function following retinal and optic nerve ischemia.
    Levy NS, Adams CK.
    Invest Ophthalmol; 1975 Feb 18; 14(2):91-7. PubMed ID: 46218
    [Abstract] [Full Text] [Related]

  • 16. Taurine in the developing rabbit visual system: changes in concentration and axonal transport including a comparison with axonally transported proteins.
    Sturman JA.
    J Neurobiol; 1979 May 18; 10(3):221-37. PubMed ID: 88503
    [Abstract] [Full Text] [Related]

  • 17. Inhibition of axoplasmic transport in the optic system by kainic acid.
    Gomez-Ramos P, Donoso JA, Samson FE.
    J Neurochem; 1981 Nov 18; 37(5):1179-85. PubMed ID: 6170732
    [Abstract] [Full Text] [Related]

  • 18. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments.
    Lewis SE, Nixon RA.
    J Cell Biol; 1988 Dec 18; 107(6 Pt 2):2689-701. PubMed ID: 3144556
    [Abstract] [Full Text] [Related]

  • 19. [32P]orthophosphate and [35S]methionine label separate pools of neurofilaments with markedly different axonal transport kinetics in mouse retinal ganglion cells in vivo.
    Nixon RA, Lewis SE, Mercken M, Sihag RK.
    Neurochem Res; 1994 Nov 18; 19(11):1445-53. PubMed ID: 7534878
    [Abstract] [Full Text] [Related]

  • 20. Increased axonal proteolysis in myelin-deficient mutant mice.
    Nixon RA.
    Science; 1982 Feb 19; 215(4535):999-1001. PubMed ID: 7156980
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.