These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
466 related items for PubMed ID: 6161949
1. Monosynaptic cortical input and local axon collaterals of identified striatonigral neurons. A light and electron microscopic study using the Golgi-peroxidase transport-degeneration procedure. Somogyi P, Bolam JP, Smith AD. J Comp Neurol; 1981 Feb 01; 195(4):567-84. PubMed ID: 6161949 [Abstract] [Full Text] [Related]
3. Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neostriatum. Dubé L, Smith AD, Bolam JP. J Comp Neurol; 1988 Jan 22; 267(4):455-71. PubMed ID: 3346370 [Abstract] [Full Text] [Related]
5. Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. Wilson CJ, Groves PM. J Comp Neurol; 1980 Dec 01; 194(3):599-615. PubMed ID: 7451684 [Abstract] [Full Text] [Related]
7. Monosynaptic input from the nucleus accumbens--ventral striatum region to retrogradely labelled nigrostriatal neurones. Somogyi P, Bolam JP, Totterdell S, Smith AD. Brain Res; 1981 Aug 03; 217(2):245-63. PubMed ID: 7248789 [Abstract] [Full Text] [Related]
8. The postsynaptic targets of substance P-immunoreactive terminals in the rat neostriatum with particular reference to identified spiny striatonigral neurons. Bolam JP, Izzo PN. Exp Brain Res; 1988 Aug 03; 70(2):361-77. PubMed ID: 2454839 [Abstract] [Full Text] [Related]
9. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Freund TF, Powell JF, Smith AD. Neuroscience; 1984 Dec 03; 13(4):1189-215. PubMed ID: 6152036 [Abstract] [Full Text] [Related]
11. Glutamate decarboxylase-immunoreactive structures in the rat neostriatum: a correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry. Bolam JP, Powell JF, Wu JY, Smith AD. J Comp Neurol; 1985 Jul 01; 237(1):1-20. PubMed ID: 4044888 [Abstract] [Full Text] [Related]
12. Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey. Freund TF, Martin KA, Soltesz I, Somogyi P, Whitteridge D. J Comp Neurol; 1989 Nov 08; 289(2):315-36. PubMed ID: 2808770 [Abstract] [Full Text] [Related]
13. Synaptic organization of the striatum. Gerfen CR. J Electron Microsc Tech; 1988 Nov 08; 10(3):265-81. PubMed ID: 3069970 [Abstract] [Full Text] [Related]
15. Synaptic connections of callosal projection neurons in the vibrissal region of mouse primary motor cortex: an electron microscopic/horseradish peroxidase study. Porter LL, White EL. J Comp Neurol; 1986 Jun 22; 248(4):573-87. PubMed ID: 3013951 [Abstract] [Full Text] [Related]
16. The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): a Golgi-electron microscopic study. Saint Marie RL, Peters A. J Comp Neurol; 1985 Mar 08; 233(2):213-35. PubMed ID: 3973102 [Abstract] [Full Text] [Related]
18. The GABA neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry. Ribak CE, Vaughn JE, Roberts E. J Comp Neurol; 1979 Sep 15; 187(2):261-83. PubMed ID: 226567 [Abstract] [Full Text] [Related]