These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
122 related items for PubMed ID: 6167693
21. Rohon-Beard neuron origin from blastomeres of the 16-cell frog embryo. Jacobson M. J Neurosci; 1981 Aug; 1(8):918-22. PubMed ID: 7346595 [Abstract] [Full Text] [Related]
22. Fates of Animal-Dorsal Blastomeres of Eight-Cell Stage Xenopus Embryos Vary according to the Specific Patterns of the Third Cleavage Plane: (Xenopus embryos/animal-dorsal blastomeres/third cleavage/developmental fates/fluorescein dextran amine). Masho R. Dev Growth Differ; 1988 Aug; 30(4):347-359. PubMed ID: 37281234 [Abstract] [Full Text] [Related]
23. Differentiation of presumptive primordial germ cell (pPGC)-like cells in explants into PGCs in experimental tadpoles. Ikenishi K, Okuda T, Nakazato S. Dev Biol; 1984 May; 103(1):258-62. PubMed ID: 6714519 [Abstract] [Full Text] [Related]
24. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives. Grunz H. Int J Dev Biol; 1994 Mar; 38(1):69-76. PubMed ID: 8074997 [Abstract] [Full Text] [Related]
25. Dorsal Blastomeres in the Equatorial Region of the 32-Cell Xenopus Embryo Autonomously Produce Progeny Committed to the Organizer: (Xenopus/32-cell embryo/blastomere transplantation/determinant localization/head organizer). Takasaki H, Konishi H. Dev Growth Differ; 1989 Apr; 31(2):147-156. PubMed ID: 37281786 [Abstract] [Full Text] [Related]
26. Cytoplasmic localization and chordamesoderm induction in the frog embryo. Gimlich RL. J Embryol Exp Morphol; 1985 Nov; 89 Suppl():89-111. PubMed ID: 3831222 [Abstract] [Full Text] [Related]
28. States of determination of single cells transplanted between 512-cell Xenopus embryos. Jacobson M, Xu WL. Dev Biol; 1989 Jan; 131(1):119-25. PubMed ID: 2535820 [Abstract] [Full Text] [Related]
29. Fates and states of determination of single vegetal pole blastomeres of X. laevis. Heasman J, Wylie CC, Hausen P, Smith JC. Cell; 1984 May; 37(1):185-94. PubMed ID: 6722871 [Abstract] [Full Text] [Related]
30. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo. Gimlich RL. Dev Biol; 1986 Jun; 115(2):340-52. PubMed ID: 3709967 [Abstract] [Full Text] [Related]
31. The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos. Danilchik MV, Black SD. Dev Biol; 1988 Jul; 128(1):58-64. PubMed ID: 2454855 [Abstract] [Full Text] [Related]
35. Transition of the blastomere cell cycle from cell size-independent to size-dependent control at the midblastula stage in Xenopus laevis. Wang P, Hayden S, Masui Y. J Exp Zool; 2000 Jul 01; 287(2):128-44. PubMed ID: 10900432 [Abstract] [Full Text] [Related]
36. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Gimlich RL, Gerhart JC. Dev Biol; 1984 Jul 01; 104(1):117-30. PubMed ID: 6203792 [Abstract] [Full Text] [Related]
37. The role of early lineage in GABAergic and glutamatergic cell fate determination in Xenopus laevis. Li M, Sipe CW, Hoke K, August LL, Wright MA, Saha MS. J Comp Neurol; 2006 Apr 20; 495(6):645-57. PubMed ID: 16506195 [Abstract] [Full Text] [Related]
38. Establishment of embryonic axes in larvae of the starfish, Asterina pectinifera. Kominami T. J Embryol Exp Morphol; 1983 Jun 20; 75():87-100. PubMed ID: 6886618 [Abstract] [Full Text] [Related]
39. Indeterminate cell lineage of the zebrafish embryo. Kimmel CB, Warga RM. Dev Biol; 1987 Nov 20; 124(1):269-80. PubMed ID: 3666309 [Abstract] [Full Text] [Related]
40. Clonal analysis and cell lineages of the vertebrate central nervous system. Jacobson M. Annu Rev Neurosci; 1985 Nov 20; 8():71-102. PubMed ID: 2580474 [No Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]