These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 6179832

  • 1. [Separation of red blood cells from G6PD-deficient patients in dextran density gradients].
    Grieger M, Bier K.
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1982; 109(2):290-306. PubMed ID: 6179832
    [Abstract] [Full Text] [Related]

  • 2. New stable mutant (Gd(-) variants: G6PD Tashkent and G6PD Nucus. Molecular basis of hereditary enzyme deficiency.
    Yermakov N, Tokarev Ju, Chernjak N, Schönian G, Grieger M, Guckler A, Jacobasch G, Mahmudova M, Bahramov S.
    Acta Biol Med Ger; 1981; 40(4-5):559-62. PubMed ID: 7315103
    [Abstract] [Full Text] [Related]

  • 3. Red cell G6PD decay in circulating cells: a possible marker for variants identification.
    Pescarmona GP, Turrini F, Naitana A, Bosia A, Perroni L.
    Biomed Biochim Acta; 1983; 42(11-12):S291-2. PubMed ID: 6675706
    [Abstract] [Full Text] [Related]

  • 4. Metabolism of the hexose monophosphate shunt in glucose-6-phosphate dehydrogenase deficiency and closely interrelated reactions.
    Jacobasch G, Bleiber R, Schönian G.
    Haematologia (Budap); 1982 Dec; 15(4):401-7. PubMed ID: 7186479
    [Abstract] [Full Text] [Related]

  • 5. Prognosis of hemolytic anemia in G6PD- subjects. Multifactorial cluster analysis of biochemical characteristics of red cell age groups.
    Yermakov NV, Jacobasch G, Krekhnov BV, Ermakova TA.
    Biomed Biochim Acta; 1990 Dec; 49(2-3):S242-6. PubMed ID: 2386512
    [Abstract] [Full Text] [Related]

  • 6. Diurnal fluctuation of leukocyte G6PD activity. A possible explanation for the normal neutrophil bactericidal activity and the low incidence of pyogenic infections in patients with severe G6PD deficiency in Israel.
    Wolach B, Ashkenazi M, Grossmann R, Gavrieli R, Friedman Z, Bashan N, Roos D.
    Pediatr Res; 2004 May; 55(5):807-13. PubMed ID: 14973180
    [Abstract] [Full Text] [Related]

  • 7. Behaviour of cell physiological and biochemical indicators of maturation and aging of red blood cells in density fractionated red blood cells during a bleeding anaemia of the rabbit.
    Gross J, Coutelle C, Schulz W, Schmalisch G, Rosenthal S.
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1986 May; 113(4):515-25. PubMed ID: 2431973
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Development of a novel mouse model of severe glucose-6-phosphate dehydrogenase (G6PD)-deficiency for in vitro and in vivo assessment of hemolytic toxicity to red blood cells.
    Ko CH, Li K, Li CL, Ng PC, Fung KP, James AE, Wong RP, Gu GJ, Fok TF.
    Blood Cells Mol Dis; 2011 Oct 15; 47(3):176-81. PubMed ID: 21839656
    [Abstract] [Full Text] [Related]

  • 10. Marked decrease in specific activity contributes to disease phenotype in two human glucose 6-phosphate dehydrogenase mutants, G6PD(Union) and G6PD(Andalus).
    Wang XT, Lam VM, Engel PC.
    Hum Mutat; 2005 Sep 15; 26(3):284. PubMed ID: 16088936
    [Abstract] [Full Text] [Related]

  • 11. Structural variants of human glucose 6-phosphate dehydrogenase (G6PD): role of intracellular decay in the expression of deficiency.
    De Flora A, Morelli A, Benatti U.
    Biomed Biochim Acta; 1983 Sep 15; 42(11-12):S247-52. PubMed ID: 6675698
    [Abstract] [Full Text] [Related]

  • 12. [The role of NADPH in the development of neonatal jaundice with G6PD deficiency].
    Chen F, Zhang Y, Wu Z.
    Zhonghua Yi Xue Za Zhi; 1997 Apr 15; 77(4):278-81. PubMed ID: 9596929
    [Abstract] [Full Text] [Related]

  • 13. Haemolytic crises caused by Hoya carnosa in a patient with G6PD deficiency.
    Kuliszkiewicz-Janus M, Tyran W, Szajerka G.
    Acta Haematol Pol; 1992 Apr 15; 23(1):63-7. PubMed ID: 1615754
    [Abstract] [Full Text] [Related]

  • 14. The relationship between the enzyme activity, lipid peroxidation and red blood cells deformability in hemizygous and heterozygous glucose-6-phosphate dehydrogenase deficient individuals.
    Gurbuz N, Yalcin O, Aksu TA, Baskurt OK.
    Clin Hemorheol Microcirc; 2004 Apr 15; 31(3):235-42. PubMed ID: 15322329
    [Abstract] [Full Text] [Related]

  • 15. [Impaired glutathione metabolism in hemolytic anemia].
    Kondo T.
    Rinsho Byori; 1990 Apr 15; 38(4):355-9. PubMed ID: 2195189
    [Abstract] [Full Text] [Related]

  • 16. Clinical utility of fractionating erythrocytes into "Percoll" density gradients.
    Mosca A, Paleari R, Modenese A, Rossini S, Parma R, Rocco C, Russo V, Caramenti G, Paderi ML, Galanello R.
    Adv Exp Med Biol; 1991 Apr 15; 307():227-38. PubMed ID: 1666816
    [Abstract] [Full Text] [Related]

  • 17. The potential use of xylitol in glucose-6-phosphate dehydrogenase deficiency anemia.
    Wang YM, Patterson JH, Van Eys J.
    J Clin Invest; 1971 Jul 15; 50(7):1421-8. PubMed ID: 4397414
    [Abstract] [Full Text] [Related]

  • 18. Mechanisms of decreased erythrocyte deformability and survival in glucose 6-phosphate dehydrogenase mutants.
    Flynn TP, Johnson GJ, Allen DW.
    Prog Clin Biol Res; 1981 Jul 15; 56():231-49. PubMed ID: 7330011
    [Abstract] [Full Text] [Related]

  • 19. Red cell enzymopathies as a model of inborn errors of metabolism.
    Miwa S, Kanno H, Hirono A, Fujii H.
    Southeast Asian J Trop Med Public Health; 1995 Jul 15; 26 Suppl 1():112-9. PubMed ID: 8629088
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.