These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


166 related items for PubMed ID: 6183273

  • 1. Elevation of cyclic AMP activates an actin-dependent contraction in teleost retinal rods.
    O'Connor P, Burnside B.
    J Cell Biol; 1982 Nov; 95(2 Pt 1):445-52. PubMed ID: 6183273
    [Abstract] [Full Text] [Related]

  • 2. Actin-dependent cell elongation in teleost retinal rods: requirement for actin filament assembly.
    O'Connor P, Burnside B.
    J Cell Biol; 1981 Jun; 89(3):517-24. PubMed ID: 6894759
    [Abstract] [Full Text] [Related]

  • 3. Cyclic nucleotide regulation of teleost rod photoreceptor inner segment length.
    Liepe BA, Burnside B.
    J Gen Physiol; 1993 Jul; 102(1):75-98. PubMed ID: 7690838
    [Abstract] [Full Text] [Related]

  • 4. Microtubules and actin filaments in teleost visual cone elongation and contraction.
    Burnside B.
    J Supramol Struct; 1976 Jul; 5(3):257-75. PubMed ID: 1035780
    [Abstract] [Full Text] [Related]

  • 5. Shortening of the calycal process actin cytoskeleton is correlated with myoid elongation in teleost rods.
    Pagh-Roehl K, Wang E, Burnside B.
    Exp Eye Res; 1992 Nov; 55(5):735-46. PubMed ID: 1478283
    [Abstract] [Full Text] [Related]

  • 6. Retinomotor pigment migration in the teleost retinal pigment epithelium. I. Roles for actin and microtubules in pigment granule transport and cone movement.
    Burnside B, Adler R, O'Connor P.
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):1-15. PubMed ID: 6826305
    [Abstract] [Full Text] [Related]

  • 7. Regulation of reactivated elongation in lysed cell models of teleost retinal cones by cAMP and calcium.
    Gilson CA, Ackland N, Burnside B.
    J Cell Biol; 1986 Mar; 102(3):1047-59. PubMed ID: 3005333
    [Abstract] [Full Text] [Related]

  • 8. Thin (actin) and thick (myosinlike) filaments in cone contraction in the teleost retina.
    Burnside B.
    J Cell Biol; 1978 Jul; 78(1):227-46. PubMed ID: 566760
    [Abstract] [Full Text] [Related]

  • 9. Actin-dependent myoid elongation in teleost rod inner/outer segments occurs in the absence of net actin polymerization.
    Pagh-Roehl K, Brandenburger J, Wang E, Burnside B.
    Cell Motil Cytoskeleton; 1992 Jul; 21(3):235-51. PubMed ID: 1581976
    [Abstract] [Full Text] [Related]

  • 10. Retinomotor pigment migration in the teleost retinal pigment epithelium. II. Cyclic-3',5'-adenosine monophosphate induction of dark-adaptive movement in vitro.
    Burnside B, Basinger S.
    Invest Ophthalmol Vis Sci; 1983 Jan; 24(1):16-23. PubMed ID: 6186630
    [Abstract] [Full Text] [Related]

  • 11. Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas.
    Dearry A, Burnside B.
    J Gen Physiol; 1984 Apr; 83(4):589-611. PubMed ID: 6202826
    [Abstract] [Full Text] [Related]

  • 12. Opposing microtubule- and actin-dependent forces in the development and maintenance of structural polarity in retinal photoreceptors.
    Madreperla SA, Adler R.
    Dev Biol; 1989 Jan; 131(1):149-60. PubMed ID: 2642427
    [Abstract] [Full Text] [Related]

  • 13. Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3','5-monophosphate.
    Burnside B, Evans M, Fletcher RT, Chader GJ.
    J Gen Physiol; 1982 May; 79(5):759-74. PubMed ID: 6284859
    [Abstract] [Full Text] [Related]

  • 14. Reactivation of contraction in detergent-lysed teleost retinal cones.
    Burnside B, Smith B, Nagata M, Porrello K.
    J Cell Biol; 1982 Jan; 92(1):199-206. PubMed ID: 7199051
    [Abstract] [Full Text] [Related]

  • 15. Identification of cyclic nucleotide-regulated phosphoproteins, including phosducin, in motile rod inner-outer segments of teleosts.
    Pagh-Roehl K, Han E, Burnside B.
    Exp Eye Res; 1993 Dec; 57(6):679-91. PubMed ID: 8150021
    [Abstract] [Full Text] [Related]

  • 16. Microtubules and actin filaments are not critically involved in the biogenesis of epithelial cell surface polarity.
    Salas PJ, Misek DE, Vega-Salas DE, Gundersen D, Cereijido M, Rodriguez-Boulan E.
    J Cell Biol; 1986 May; 102(5):1853-67. PubMed ID: 2871031
    [Abstract] [Full Text] [Related]

  • 17. Microtubules in cone myoid elongation in the teleost retina.
    Warren RH, Brunside B.
    J Cell Biol; 1978 Jul; 78(1):247-59. PubMed ID: 670294
    [Abstract] [Full Text] [Related]

  • 18. Dopamine induces light-adaptive retinomotor movements in bullfrog cones via D2 receptors and in retinal pigment epithelium via D1 receptors.
    Dearry A, Edelman JL, Miller S, Burnside B.
    J Neurochem; 1990 Apr; 54(4):1367-78. PubMed ID: 2156019
    [Abstract] [Full Text] [Related]

  • 19. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B, Goldmann T, Giessl A, Wolfrum U.
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [Abstract] [Full Text] [Related]

  • 20. A dissection of the mechanisms generating and stabilizing polarity in mouse 8- and 16-cell blastomeres: the role of cytoskeletal elements.
    Johnson MH, Maro B.
    J Embryol Exp Morphol; 1985 Dec; 90():311-34. PubMed ID: 2871124
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.