These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


111 related items for PubMed ID: 6188487

  • 1. Structural dynamics of transfer ribonucleic acid: carbon-13 nuclear magnetic resonance of [13C]methyl-enriched pure species.
    Kopper RA, Schmidt PG, Agris PF.
    Biochemistry; 1983 Mar 15; 22(6):1396-401. PubMed ID: 6188487
    [No Abstract] [Full Text] [Related]

  • 2. Complete nuclear magnetic resonance signal assignments and initial structural studies of [13C]methyl-enriched yeast transfer ribonucleic acid.
    Agris PF, Kovacs SA, Smith C, Kopper RA, Schmidt PG.
    Biochemistry; 1983 Mar 15; 22(6):1402-8. PubMed ID: 6188488
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Structure of transfer RNA by carbon NMR: resolution of single carbon resonances from 13C-enriched, purified species.
    Agris PF, Schmidt PG.
    Nucleic Acids Res; 1980 May 10; 8(9):2085-91. PubMed ID: 6159600
    [Abstract] [Full Text] [Related]

  • 6. A rapid and specific assay for sugar methylation in ribonucleic acid.
    Baskin F, Dekker CA.
    J Biol Chem; 1967 Nov 25; 242(22):5447-9. PubMed ID: 4863753
    [No Abstract] [Full Text] [Related]

  • 7. Chemical modification of ribonucleic acid. A direct study by carbon-13 nuclear magnetic resonance spectroscopy.
    Chang C, Lee CG.
    Biochemistry; 1981 Apr 28; 20(9):2657-61. PubMed ID: 7236629
    [Abstract] [Full Text] [Related]

  • 8. Behavior of transfer ribonucleic acids on polyacrylamide gel columns.
    Egan BZ, Rhear RW, Kelmers AD.
    Biochim Biophys Acta; 1969 Jan 21; 174(1):23-31. PubMed ID: 4885695
    [No Abstract] [Full Text] [Related]

  • 9. Structural properties of 5-fluorouracil-containing transfer ribonucleic acids from Escherichia coli.
    Kaiser II.
    Biochemistry; 1971 Apr 27; 10(9):1540-5. PubMed ID: 4931747
    [No Abstract] [Full Text] [Related]

  • 10. Effect of deamination of the terminal adenosine of transfer ribonucleic acid on its amino acid acceptor ability.
    Li C, Su JC.
    Biochem Biophys Res Commun; 1967 Sep 27; 28(6):1068-72. PubMed ID: 4863606
    [No Abstract] [Full Text] [Related]

  • 11. Hydrogen-exchange measurements on Escherichia coli transfer ribonucleic acid before, after, and during its aminoacylation.
    Gantt RR, Englander SW, Simpson MV.
    Biochemistry; 1969 Feb 27; 8(2):475-82. PubMed ID: 4893573
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Transfer ribonucleic acids in Escherichia coli. Multiplicity and variation.
    Muench KH, Safille PA.
    Biochemistry; 1968 Aug 27; 7(8):2799-808. PubMed ID: 4299084
    [No Abstract] [Full Text] [Related]

  • 14. Stimulation of soluble ribonucleic acid methylase activity by polyamines.
    Leboy PS.
    Biochemistry; 1970 Mar 31; 9(7):1577-84. PubMed ID: 4985261
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Ionic strength effects in the aminoacylation of valine transfer ribonucleic acid.
    Loftfield RB, Eigner EA.
    J Biol Chem; 1967 Nov 25; 242(22):5355-9. PubMed ID: 4863747
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.