These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
163 related items for PubMed ID: 6191982
1. Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Bernardi P, Azzone GF. Eur J Biochem; 1983 Aug 01; 134(2):377-83. PubMed ID: 6191982 [Abstract] [Full Text] [Related]
2. Effect of Ca2+, peroxides, SH reagents, phosphate and aging on the permeability of mitochondrial membranes. Rizzuto R, Pitton G, Azzone GF. Eur J Biochem; 1987 Jan 15; 162(2):239-49. PubMed ID: 3803384 [Abstract] [Full Text] [Related]
3. Electroneutral H+-K+ exchange in liver mitochondria. Regulation by membrane potential. Bernardi P, Azzone GF. Biochim Biophys Acta; 1983 Aug 31; 724(2):212-23. PubMed ID: 6309221 [Abstract] [Full Text] [Related]
4. t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP. Bernardes CF, Pereira da Silva L, Vercesi AE. Biochim Biophys Acta; 1986 Jun 10; 850(1):41-8. PubMed ID: 2423127 [Abstract] [Full Text] [Related]
5. Pathway for uncoupler-induced calcium efflux in rat liver mitochondria: inhibition by ruthenium red. Bernardi P, Paradisi V, Pozzan T, Azzone GF. Biochemistry; 1984 Apr 10; 23(8):1645-51. PubMed ID: 6202317 [Abstract] [Full Text] [Related]
6. Modulation of Ca2+ efflux and rebounding Ca2+ transport in rat liver mitochondria. Bernardi P. Biochim Biophys Acta; 1984 Aug 31; 766(2):277-82. PubMed ID: 6205692 [Abstract] [Full Text] [Related]
7. Effects of adrenergic agonists and mitochondrial energy state on the Ca2+ transport systems of mitochondria. Goldstone TP, Roos I, Crompton M. Biochemistry; 1987 Jan 13; 26(1):246-54. PubMed ID: 2950922 [Abstract] [Full Text] [Related]
8. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria. Rugolo M, Siliprandi D, Siliprandi N, Toninello A. Biochem J; 1981 Dec 15; 200(3):481-6. PubMed ID: 6177312 [Abstract] [Full Text] [Related]
15. Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Duchen MR. Biochem J; 1992 Apr 01; 283 ( Pt 1)(Pt 1):41-50. PubMed ID: 1373604 [Abstract] [Full Text] [Related]
16. The participation of NADP, the transmembrane potential and the energy-linked NAD(P) transhydrogenase in the process of Ca2+ efflux from rat liver mitochondria. Vercesi AE. Arch Biochem Biophys; 1987 Jan 01; 252(1):171-8. PubMed ID: 3813533 [Abstract] [Full Text] [Related]
17. On the state of calcium ions in isolated rat liver mitochondria IV. Prevention of phosphate-induced mitochondrial destruction by ruthenium red-insensitive calcium release. Blaich G, Krell H, Pfaff E. Biol Chem Hoppe Seyler; 1985 May 01; 366(5):515-9. PubMed ID: 2408639 [Abstract] [Full Text] [Related]
18. Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions across the mitochondrial membrane. Mironova GD, Saris NE, Belosludtseva NV, Agafonov AV, Elantsev AB, Belosludtsev KN. Biochim Biophys Acta; 2015 Feb 01; 1848(2):488-95. PubMed ID: 25450352 [Abstract] [Full Text] [Related]
19. The role of phosphate in the regulation of the independent calcium-efflux pathway of liver mitochondria. Zoccarato F, Nicholls D. Eur J Biochem; 1982 Oct 01; 127(2):333-8. PubMed ID: 6183118 [Abstract] [Full Text] [Related]