These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
293 related items for PubMed ID: 6192809
1. Effect of micromolar concentrations of manganese ions on calcium-ion cycling in rat liver mitochondria. Hughes BP, Exton JH. Biochem J; 1983 Jun 15; 212(3):773-82. PubMed ID: 6192809 [Abstract] [Full Text] [Related]
2. Manganese stimulates calcium flux through the mitochondrial uniporter. Allshire A, Bernardi P, Saris NE. Biochim Biophys Acta; 1985 May 03; 807(2):202-9. PubMed ID: 3978095 [Abstract] [Full Text] [Related]
3. [Changes in the effect of Cd2+ on the respiration of isolated rat liver mitochondria after their preincubation with Ca2+, Sr2+, Ba2+, Mn2+ and ruthenium red]. Korotkov SM, Skul'skiĭ IA. Tsitologiia; 1996 May 03; 38(4-5):500-9. PubMed ID: 8966752 [Abstract] [Full Text] [Related]
8. Involvement of palmitate/Ca2+(Sr2+)-induced pore in the cycling of ions across the mitochondrial membrane. Mironova GD, Saris NE, Belosludtseva NV, Agafonov AV, Elantsev AB, Belosludtsev KN. Biochim Biophys Acta; 2015 Feb 03; 1848(2):488-95. PubMed ID: 25450352 [Abstract] [Full Text] [Related]
9. Inhibition of ruthenium red-induced Ca2+ efflux from liver mitochondria by the antibiotic X-537A. Pereira da Silva L, Bernardes CF, Vercesi AE. Biochem Biophys Res Commun; 1984 Oct 15; 124(1):80-6. PubMed ID: 6208904 [Abstract] [Full Text] [Related]
10. The inhibitory effect of Mn2+ on the ATP-dependent Ca2+ pump in rat brain synaptic plasma membrane vesicles. Low W, Brawarnick N, Rahamimoff H. Biochem Pharmacol; 1991 Sep 27; 42(8):1537-43. PubMed ID: 1656989 [Abstract] [Full Text] [Related]
11. Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport. Lenzen S, Hickethier R, Panten U. J Biol Chem; 1986 Dec 15; 261(35):16478-83. PubMed ID: 3782131 [Abstract] [Full Text] [Related]
12. Regulation of the mitochondrial matrix volume in vivo and in vitro. The role of calcium. Halestrap AP, Quinlan PT, Whipps DE, Armston AE. Biochem J; 1986 Jun 15; 236(3):779-87. PubMed ID: 2431681 [Abstract] [Full Text] [Related]
13. Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. Wingrove DE, Gunter TE. J Biol Chem; 1986 Nov 15; 261(32):15166-71. PubMed ID: 2429966 [Abstract] [Full Text] [Related]
14. Evidence for more than one Ca2+ transport mechanism in mitochondria. Puskin JS, Gunter TE, Gunter KK, Russell PR. Biochemistry; 1976 Aug 24; 15(17):3834-42. PubMed ID: 8094 [Abstract] [Full Text] [Related]
15. Parallel efflux of Ca2+ and Pi in energized rat liver mitochondria. Rugolo M, Siliprandi D, Siliprandi N, Toninello A. Biochem J; 1981 Dec 15; 200(3):481-6. PubMed ID: 6177312 [Abstract] [Full Text] [Related]
16. Effect of pH and Ca2+ on the retention of Ca2+ by rat liver mitochondria. Akerman KE. Arch Biochem Biophys; 1978 Aug 15; 189(2):256-62. PubMed ID: 30403 [No Abstract] [Full Text] [Related]
17. t-Butylhydroperoxide-induced Ca2+ efflux from liver mitochondria in the presence of physiological concentrations of Mg2+ and ATP. Bernardes CF, Pereira da Silva L, Vercesi AE. Biochim Biophys Acta; 1986 Jun 10; 850(1):41-8. PubMed ID: 2423127 [Abstract] [Full Text] [Related]
18. 'Pore' formation is not required for the hydroperoxide-induced Ca2+ release from rat liver mitochondria. Schlegel J, Schweizer M, Richter C. Biochem J; 1992 Jul 01; 285 ( Pt 1)(Pt 1):65-9. PubMed ID: 1379041 [Abstract] [Full Text] [Related]
19. Altered ATP-dependent mitochondrial Ca2+ uptake in cold ischemia is attenuated by ruthenium red. Belous A, Knox C, Nicoud IB, Pierce J, Anderson C, Pinson CW, Chari RS. J Surg Res; 2003 May 15; 111(2):284-9. PubMed ID: 12850475 [Abstract] [Full Text] [Related]