These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


77 related items for PubMed ID: 6198655

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Cell-cell interactions in erythropoiesis.
    Mamus SW, Schulman JC, Zanjani ED.
    Prog Clin Biol Res; 1986; 211():227-44. PubMed ID: 2421360
    [No Abstract] [Full Text] [Related]

  • 5. Human CD34(+) and CD34(+)CD38(-) hematopoietic progenitors in sickle cell disease differ phenotypically and functionally from normal and suggest distinct subpopulations that generate F cells.
    Luck L, Zeng L, Hiti AL, Weinberg KI, Malik P.
    Exp Hematol; 2004 May; 32(5):483-93. PubMed ID: 15145217
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The role of T lymphocytes in human erythropoiesis.
    Lipton JM, Nathan DG.
    Prog Clin Biol Res; 1981 May; 58():57-75. PubMed ID: 6791169
    [No Abstract] [Full Text] [Related]

  • 9. Hemoglobin switching activity: target cells and direct evidence for a role of environment to cell interactions in Hb F to Hb A switching.
    Papayannopoulou T, Nakamoto B, Kurachi S, Stamatoyannopoulos G.
    Trans Assoc Am Physicians; 1983 May; 96():252-60. PubMed ID: 6208667
    [No Abstract] [Full Text] [Related]

  • 10. Hemoglobin switching: a new animal model for genetic and molecular studies.
    Tam JW, Hui CC, Woo C, Lam VM.
    Birth Defects Orig Artic Ser; 1987 May; 23(5A):133-7. PubMed ID: 2446673
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Erythropoiesis: model systems, molecular regulators, and developmental programs.
    Tsiftsoglou AS, Vizirianakis IS, Strouboulis J.
    IUBMB Life; 2009 Aug; 61(8):800-30. PubMed ID: 19621348
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. [The role of peritoneal T-lymphocytes and macrophages in triggering stress-erythropoiesis in vivo after one-time massive blood loss in mice].
    Belan EI, Golovkina LL.
    Biull Eksp Biol Med; 1994 Sep; 118(9):287-90. PubMed ID: 7819563
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Reversal to fetal erythropoiesis in acute myelogenous leukemia.
    Gupta AD, Vakil RF, Aga R, Shetty PA.
    Indian J Cancer; 1983 Sep; 20(3):166-8. PubMed ID: 6197353
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.