These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


77 related items for PubMed ID: 620002

  • 21. Catalytic hydrolysis and synthesis of adenosine 5'-triphosphate by stereoisomers of covalently labeled F1-adenosinetriphosphatase and reconstituted submitochondrial particles.
    Wang JH, Cesana J, Wu JC.
    Biochemistry; 1987 Aug 25; 26(17):5527-33. PubMed ID: 2890376
    [Abstract] [Full Text] [Related]

  • 22. Rapid nucleotide labeling and 18O exchange probes of intermediate states in electron-transport-coupled phosphorylation.
    Boyer PD, Stempel K.
    Methods Enzymol; 1979 Aug 25; 55():245-61. PubMed ID: 459844
    [No Abstract] [Full Text] [Related]

  • 23. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV, Galkin MA, Sedlov AV, Vinogradov AD.
    Biochemistry (Mosc); 1999 Oct 25; 64(10):1128-37. PubMed ID: 10561559
    [Abstract] [Full Text] [Related]

  • 24. The use of 8-azido-ATP and 8-azido-ADP as photoaffinity labels of the ATP synthase in submitochondrial particles: evidence for a mechanism of ATP hydrolysis involving two independent catalytic sites?
    Sloothaak JB, Berden JA, Herweijer MA, Kemp A.
    Biochim Biophys Acta; 1985 Aug 28; 809(1):27-38. PubMed ID: 2862913
    [Abstract] [Full Text] [Related]

  • 25. The effects of ADP on reverse electron flow and the oxygen exchange reactions catalyzed by bovine heart muscle submitochondrial particles.
    Mitchell RA, Russo JA, Lamos CM.
    J Supramol Struct; 1975 Aug 28; 3(3):256-60. PubMed ID: 1237767
    [Abstract] [Full Text] [Related]

  • 26. The phosphorylation potential generated by respiring bovine heart submitochondrial particles.
    Ferguson SJ, Sorgato MC.
    Biochem J; 1977 Nov 15; 168(2):299-303. PubMed ID: 202265
    [Abstract] [Full Text] [Related]

  • 27. 18O-exchange catalyzed by myosin, heavy meromyosin, heavy meromyosin subfragment 1 and their complexes with actin.
    Panteleeva NS, Biró NA, Karandashov EA, Fábián F, Krasovskaya IE, Kuleva NV, Skvortsevich EG.
    Acta Biochim Biophys Acad Sci Hung; 1977 Nov 15; 12(1):37-44. PubMed ID: 141190
    [Abstract] [Full Text] [Related]

  • 28. Mechanism of activation of bicarbonate ion by mitochondrial carbamoyl-phosphate synthetase: formation of enzyme-bound adenosine diphosphate from the adenosine triphosphate that yields inorganic phosphate.
    Rubio V, Britton HG, Grisolia S, Sproat BS, Lowe G.
    Biochemistry; 1981 Mar 31; 20(7):1969-74. PubMed ID: 6261808
    [Abstract] [Full Text] [Related]

  • 29. Mechanisms by which reactions catalyzed by chloroplast coupling factor 1 are inhibited: ATP synthesis and ATP-H2O oxygen exchange.
    Spencer JG, Wimmer MJ.
    Biochemistry; 1985 Jul 16; 24(15):3884-90. PubMed ID: 2864951
    [Abstract] [Full Text] [Related]

  • 30. [18 O-exchange during ATP and n-nitrophenylphosphate hydrolysis by Na, K-ATPase from bovine brain].
    Smirnova IN, Skvortsevich EG, Boldyrev AA, Panteleeva NS.
    Biokhimiia; 1977 Nov 16; 42(11):2035-8. PubMed ID: 145248
    [Abstract] [Full Text] [Related]

  • 31. Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of F0F1-ATPase.
    Pérez JA, Ferguson SJ.
    Biochemistry; 1990 Nov 20; 29(46):10503-18. PubMed ID: 2148690
    [Abstract] [Full Text] [Related]

  • 32. An adenosine triphosphate-phosphate exchange catalyzed by a soluble enzyme couple inhibited by uncouplers of oxidative phosphorylation.
    Allison WS, Benitez LV.
    Proc Natl Acad Sci U S A; 1972 Oct 20; 69(10):3004-8. PubMed ID: 4507619
    [Abstract] [Full Text] [Related]

  • 33. The mode of inhibition of oxidative phosphorylation by efrapeptin (A23871). Evidence for an alternating site mechanism for ATP synthesis.
    Cross RL, Kohlbrenner WE.
    J Biol Chem; 1978 Jul 25; 253(14):4865-73. PubMed ID: 149791
    [Abstract] [Full Text] [Related]

  • 34. Energy-induced modulation of the kinetics of oxidative phosphorylation and reverse electron transfer.
    Hekman C, Matsuno-Yagi A, Hatefi Y.
    Biochemistry; 1988 Sep 20; 27(19):7559-65. PubMed ID: 2905168
    [Abstract] [Full Text] [Related]

  • 35. Intermediate oxygen exchange catalyzed by the actin-activated skeletal myosin adenosinetriphosphatase.
    Evans JA, Eisenberg E.
    Biochemistry; 1989 Sep 19; 28(19):7741-7. PubMed ID: 2532933
    [Abstract] [Full Text] [Related]

  • 36. Mechanism of oxygen exchange in actin-activated hydrolysis of adenosine triphosphate by myosin subfragment 1.
    Shukla KK, Levy HM.
    Biochemistry; 1977 Jan 11; 16(1):132-6. PubMed ID: 137740
    [Abstract] [Full Text] [Related]

  • 37. Binding of adenine nucleotides to the F1-inhibitor protein complex of bovine heart submitochondrial particles.
    Martins OB, Salgado-Martins I, Grieco MA, Gómez-Puyou A, de Gómez-Puyou MT.
    Biochemistry; 1992 Jun 30; 31(25):5784-90. PubMed ID: 1610824
    [Abstract] [Full Text] [Related]

  • 38. The extent of mitochondrial F1-ATPase and adenine nucleotide carrier activity with epsilon-ATP.
    Kaplan RS, Coleman PS.
    Biochim Biophys Acta; 1978 Feb 09; 501(2):269-74. PubMed ID: 145875
    [Abstract] [Full Text] [Related]

  • 39. Uncoupling of oxidative phosphorylation: different effects of lipophilic weak acids and electrogenic ionophores on the kinetics of ATP synthesis.
    Matsuno-Yagi A, Hatefi Y.
    Biochemistry; 1989 May 16; 28(10):4367-74. PubMed ID: 2475167
    [Abstract] [Full Text] [Related]

  • 40. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite.
    Vasilyeva EA, Minkov IB, Fitin AF, Vinogradov AD.
    Biochem J; 1982 Jan 15; 202(1):15-23. PubMed ID: 6211171
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 4.