These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 6202687

  • 1. The permeability of uncoupled heart mitochondria to potassium ion.
    Jung DW, Brierley GP.
    J Biol Chem; 1984 Jun 10; 259(11):6904-11. PubMed ID: 6202687
    [Abstract] [Full Text] [Related]

  • 2. On the relationship between the uncoupler-induced efflux of K+ from heart mitochondria and the oxidation-reduction state of pyridine nucleotides.
    Jung DW, Brierley GP.
    J Biol Chem; 1981 Oct 25; 256(20):10490-6. PubMed ID: 6169721
    [Abstract] [Full Text] [Related]

  • 3. K+/H+ antiport in heart mitochondria.
    Brierley GP, Jurkowitz MS, Farooqui T, Jung DW.
    J Biol Chem; 1984 Dec 10; 259(23):14672-8. PubMed ID: 6438102
    [Abstract] [Full Text] [Related]

  • 4. EGTA inhibits reverse uniport-dependent Ca2+ release from uncoupled mitochondria. Possible regulation of the Ca2+ uniporter by a Ca2+ binding site on the cytoplasmic side of the inner membrane.
    Igbavboa U, Pfeiffer DR.
    J Biol Chem; 1988 Jan 25; 263(3):1405-12. PubMed ID: 2447088
    [Abstract] [Full Text] [Related]

  • 5. Matrix magnesium and the permeability of heart mitochondria to potassium ion.
    Jung DW, Brierley GP.
    J Biol Chem; 1986 May 15; 261(14):6408-15. PubMed ID: 3084482
    [Abstract] [Full Text] [Related]

  • 6. H+-dependent efflux of Ca2+ from heart mitochondria.
    Jurkowitz MS, Brierley GP.
    J Bioenerg Biomembr; 1982 Dec 15; 14(5-6):435-49. PubMed ID: 7161280
    [Abstract] [Full Text] [Related]

  • 7. Ruthenium red-sensitive and -insensitive release of Ca2+ from uncoupled heart mitochondria.
    Jurkowitz MS, Geisbuhler T, Jung DW, Brierley GP.
    Arch Biochem Biophys; 1983 May 15; 223(1):120-8. PubMed ID: 6190435
    [Abstract] [Full Text] [Related]

  • 8. Evidence for more than one Ca2+ transport mechanism in mitochondria.
    Puskin JS, Gunter TE, Gunter KK, Russell PR.
    Biochemistry; 1976 Aug 24; 15(17):3834-42. PubMed ID: 8094
    [Abstract] [Full Text] [Related]

  • 9. Ruthenium red-induced loss of matrix K+ from uncoupled heart mitochondria.
    Jung DW, Brierley GP.
    Biochem Biophys Res Commun; 1982 Mar 30; 105(2):432-8. PubMed ID: 6178405
    [No Abstract] [Full Text] [Related]

  • 10. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS, Joshi PG, Joshi NB.
    Neurochem Res; 2000 Dec 30; 25(12):1527-36. PubMed ID: 11152381
    [Abstract] [Full Text] [Related]

  • 11. The sodium-calcium antiport of heart mitochondria is not electroneutral.
    Jung DW, Baysal K, Brierley GP.
    J Biol Chem; 1995 Jan 13; 270(2):672-8. PubMed ID: 7822294
    [Abstract] [Full Text] [Related]

  • 12. Inhibition of uncoupled respiration in tumor cells. A possible role of mitochondrial Ca2+ efflux.
    Gabai VL.
    FEBS Lett; 1993 Aug 23; 329(1-2):67-71. PubMed ID: 7689064
    [Abstract] [Full Text] [Related]

  • 13. Ion transport in rat liver mitochondria: the effect of the incubation medium osmolarity.
    Novgorodov SA, Yaguzhinsky LA.
    FEBS Lett; 1985 Apr 08; 183(1):47-51. PubMed ID: 3920081
    [Abstract] [Full Text] [Related]

  • 14. Effects of quinine on K+ transport in heart mitochondria.
    Jung DW, Farooqui T, Utz E, Brierley GP.
    J Bioenerg Biomembr; 1984 Dec 08; 16(5-6):379-90. PubMed ID: 6537432
    [Abstract] [Full Text] [Related]

  • 15. Calcium efflux mechanism in sperm mitochondria.
    Breitbart H, Rubinstein S, Gruberger M.
    Biochim Biophys Acta; 1996 Jun 13; 1312(2):79-84. PubMed ID: 8672542
    [Abstract] [Full Text] [Related]

  • 16. The permeability transition in heart mitochondria is regulated synergistically by ADP and cyclosporin A.
    Novgorodov SA, Gudz TI, Milgrom YM, Brierley GP.
    J Biol Chem; 1992 Aug 15; 267(23):16274-82. PubMed ID: 1644813
    [Abstract] [Full Text] [Related]

  • 17. [Calcium release from the rat liver mitochondria during collapse of the membrane potential].
    Akopova OV, Sagach VF.
    Ukr Biokhim Zh (1999); 2005 Aug 15; 77(3):68-75. PubMed ID: 16566132
    [Abstract] [Full Text] [Related]

  • 18. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+.
    Petronilli V, Cola C, Bernardi P.
    J Biol Chem; 1993 Jan 15; 268(2):1011-6. PubMed ID: 7678245
    [Abstract] [Full Text] [Related]

  • 19. Pathway for uncoupler-induced calcium efflux in rat liver mitochondria: inhibition by ruthenium red.
    Bernardi P, Paradisi V, Pozzan T, Azzone GF.
    Biochemistry; 1984 Apr 10; 23(8):1645-51. PubMed ID: 6202317
    [Abstract] [Full Text] [Related]

  • 20. Separate, Ca2+-activated K+ and Cl- transport pathways in Ehrlich ascites tumor cells.
    Hoffmann EK, Lambert IH, Simonsen LO.
    J Membr Biol; 1986 Apr 10; 91(3):227-44. PubMed ID: 2427725
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.