These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


191 related items for PubMed ID: 6203792

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Acquisition of developmental autonomy in the equatorial region of the Xenopus embryo.
    Gimlich RL.
    Dev Biol; 1986 Jun; 115(2):340-52. PubMed ID: 3709967
    [Abstract] [Full Text] [Related]

  • 3. Cytoplasmic localization and chordamesoderm induction in the frog embryo.
    Gimlich RL.
    J Embryol Exp Morphol; 1985 Nov; 89 Suppl():89-111. PubMed ID: 3831222
    [Abstract] [Full Text] [Related]

  • 4. Occurrence of dorsal axis-inducing activity around the vegetal pole of an uncleaved Xenopus egg and displacement to the equatorial region by cortical rotation.
    Fujisue M, Kobayakawa Y, Yamana K.
    Development; 1993 May; 118(1):163-70. PubMed ID: 19140289
    [Abstract] [Full Text] [Related]

  • 5. Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte.
    Holowacz T, Elinson RP.
    Development; 1993 Sep; 119(1):277-85. PubMed ID: 8275862
    [Abstract] [Full Text] [Related]

  • 6. Dorsoventral polarization and formation of dorsal axial structures in Xenopus laevis: analyses using UV irradiation of the full-grown oocyte and after fertilization.
    Mise N, Wakahara M.
    Int J Dev Biol; 1994 Sep; 38(3):447-53. PubMed ID: 7848828
    [Abstract] [Full Text] [Related]

  • 7. beta-Catenin has Wnt-like activity and mimics the Nieuwkoop signaling center in Xenopus dorsal-ventral patterning.
    Guger KA, Gumbiner BM.
    Dev Biol; 1995 Nov; 172(1):115-25. PubMed ID: 7589792
    [Abstract] [Full Text] [Related]

  • 8. Pattern formation in 8-cell composite embryos of Xenopus laevis.
    Kageura H, Yamana K.
    J Embryol Exp Morphol; 1986 Feb; 91():79-100. PubMed ID: 3711793
    [Abstract] [Full Text] [Related]

  • 9. Autonomous differentiation of dorsal axial structures from an animal cap cleavage stage blastomere in Xenopus.
    Gallagher BC, Hainski AM, Moody SA.
    Development; 1991 Aug; 112(4):1103-14. PubMed ID: 1935699
    [Abstract] [Full Text] [Related]

  • 10. Deep cytoplasmic rearrangements in ventralized Xenopus embryos.
    Brown EE, Denegre JM, Danilchik MV.
    Dev Biol; 1993 Nov; 160(1):148-56. PubMed ID: 8224531
    [Abstract] [Full Text] [Related]

  • 11. Injected Xwnt-8 RNA acts early in Xenopus embryos to promote formation of a vegetal dorsalizing center.
    Smith WC, Harland RM.
    Cell; 1991 Nov 15; 67(4):753-65. PubMed ID: 1657405
    [Abstract] [Full Text] [Related]

  • 12. Analysis of embryonic induction by using cell lineage markers.
    Slack JM, Dale L, Smith JC.
    Philos Trans R Soc Lond B Biol Sci; 1984 Dec 04; 307(1132):331-6. PubMed ID: 6151705
    [Abstract] [Full Text] [Related]

  • 13. Properties of the dorsal activity found in the vegetal cortical cytoplasm of Xenopus eggs.
    Holowacz T, Elinson RP.
    Development; 1995 Sep 04; 121(9):2789-98. PubMed ID: 7555707
    [Abstract] [Full Text] [Related]

  • 14. The first cleavage plane and the embryonic axis are determined by separate mechanisms in Xenopus laevis. I. Independence in undisturbed embryos.
    Danilchik MV, Black SD.
    Dev Biol; 1988 Jul 04; 128(1):58-64. PubMed ID: 2454855
    [Abstract] [Full Text] [Related]

  • 15. Vegetal egg cytoplasm promotes gastrulation and is responsible for specification of vegetal blastomeres in embryos of the ascidian Halocynthia roretzi.
    Nishida H.
    Development; 1996 Apr 04; 122(4):1271-9. PubMed ID: 8620854
    [Abstract] [Full Text] [Related]

  • 16. Experimental reversal of the normal dorsal-ventral timing of blastopore formation does not reverse axis polarity in Xenopus laevis embryos.
    Black SD.
    Dev Biol; 1989 Aug 04; 134(2):376-81. PubMed ID: 2744238
    [Abstract] [Full Text] [Related]

  • 17. The vegetal determinants required for the Spemann organizer move equatorially during the first cell cycle.
    Sakai M.
    Development; 1996 Jul 04; 122(7):2207-14. PubMed ID: 8681801
    [Abstract] [Full Text] [Related]

  • 18. Fates and states of determination of single vegetal pole blastomeres of X. laevis.
    Heasman J, Wylie CC, Hausen P, Smith JC.
    Cell; 1984 May 04; 37(1):185-94. PubMed ID: 6722871
    [Abstract] [Full Text] [Related]

  • 19. Dorsal Blastomeres in the Equatorial Region of the 32-Cell Xenopus Embryo Autonomously Produce Progeny Committed to the Organizer: (Xenopus/32-cell embryo/blastomere transplantation/determinant localization/head organizer).
    Takasaki H, Konishi H.
    Dev Growth Differ; 1989 Apr 04; 31(2):147-156. PubMed ID: 37281786
    [Abstract] [Full Text] [Related]

  • 20. Dorsal determinants in the Xenopus egg are firmly associated with the vegetal cortex and behave like activators of the Wnt pathway.
    Marikawa Y, Li Y, Elinson RP.
    Dev Biol; 1997 Nov 01; 191(1):69-79. PubMed ID: 9356172
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.