These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 6219388

  • 1. DNase I sensitivity of transcriptionally active genes in intact nuclei and isolated chromatin of plants.
    Spiker S, Murray MG, Thompson WF.
    Proc Natl Acad Sci U S A; 1983 Feb; 80(3):815-9. PubMed ID: 6219388
    [Abstract] [Full Text] [Related]

  • 2. Structure of active chromatin: isolation and characterization of transcriptionally active chromatin from rat liver.
    Tikoo K, Gupta S, Hamid QA, Shah V, Chatterjee B, Ali Z.
    Biochem J; 1997 Feb 15; 322 ( Pt 1)(Pt 1):273-9. PubMed ID: 9078273
    [Abstract] [Full Text] [Related]

  • 3. Isolation of high mobility group-containing mononucleosomes from avian erythrocyte nuclei and their sensitivity to DNase I.
    Kootstra A.
    J Biol Chem; 1982 Nov 10; 257(21):13088-94. PubMed ID: 6215407
    [Abstract] [Full Text] [Related]

  • 4. Isolation of a subclass of nuclear proteins responsible for conferring a DNase I-sensitive structure on globin chromatin.
    Weisbrod S, Weintraub H.
    Proc Natl Acad Sci U S A; 1979 Feb 10; 76(2):630-4. PubMed ID: 284387
    [Abstract] [Full Text] [Related]

  • 5. [RNA responsible for conferring a DNase I sensitive structure on albumin gene in assembled chromatin].
    Lv ZJ, Wang XF, Zhai Y, Song SX.
    Yi Chuan; 2003 Jan 10; 25(1):30-6. PubMed ID: 15639815
    [Abstract] [Full Text] [Related]

  • 6. Selective association of the trout-specific H6 protein with chromatin regions susceptible to DNase I and DNase II: possible location of HMG-T in the spacer region between core nucleosomes.
    Levy W B, Wong NC, Dixon GH.
    Proc Natl Acad Sci U S A; 1977 Jul 10; 74(7):2810-4. PubMed ID: 268631
    [Abstract] [Full Text] [Related]

  • 7. Assembly of an active chromatin structure during replication.
    Weintraub H.
    Nucleic Acids Res; 1979 Oct 10; 7(3):781-92. PubMed ID: 503846
    [Abstract] [Full Text] [Related]

  • 8. Reconstitution of a deoxyribonuclease I-sensitive structure on active genes.
    Gazit B, Panet A, Cedar H.
    Proc Natl Acad Sci U S A; 1980 Apr 10; 77(4):1787-90. PubMed ID: 6929520
    [Abstract] [Full Text] [Related]

  • 9. Enrichment of selected active human gene sequences in the placental deoxyribonucleic acid fraction associated with tightly bound nonhistone chromosomal proteins.
    Norman GL, Bekhor I.
    Biochemistry; 1981 Jun 09; 20(12):3568-78. PubMed ID: 6114743
    [Abstract] [Full Text] [Related]

  • 10. Selective digestion of transcriptionally active ovalbumin genes from oviduct nuclei.
    Garel A, Axel R.
    Proc Natl Acad Sci U S A; 1976 Nov 09; 73(11):3966-70. PubMed ID: 1069279
    [Abstract] [Full Text] [Related]

  • 11. Nuclease sensitivity of active chromatin.
    Gazit B, Cedar H.
    Nucleic Acids Res; 1980 Nov 25; 8(22):5143-55. PubMed ID: 6258137
    [Abstract] [Full Text] [Related]

  • 12. The release of high mobility group protein H6 and protamine gene sequences upon selective DNase I degradation of trout testis chromatin.
    Levy-Wilson B, Kuehl L, Dixon GH.
    Nucleic Acids Res; 1980 Jul 11; 8(13):2859-69. PubMed ID: 6253894
    [Abstract] [Full Text] [Related]

  • 13. Degradation of the ribosomal genes by DNAse I in Physarum polycephalum.
    Stalder J, Seebeck T, Braun R.
    Eur J Biochem; 1978 Oct 11; 90(2):391-5. PubMed ID: 710437
    [Abstract] [Full Text] [Related]

  • 14. Transcription renders chromatin resistant to micrococcal nuclease digestion.
    Kohno K, Yamamoto M, Endo H.
    Biochem Biophys Res Commun; 1983 Oct 14; 116(1):312-20. PubMed ID: 6357197
    [Abstract] [Full Text] [Related]

  • 15. Circular dichroism, thermal denaturation, and deoxyribonuclease I digestion studies of nucleosomes highly enriched in high mobility group proteins HMG 1 and HMG 2.
    Jackson JB, Rill RL.
    Biochemistry; 1981 Feb 17; 20(4):1042-6. PubMed ID: 6260136
    [Abstract] [Full Text] [Related]

  • 16. Transcriptionally active chromatin.
    Tsanev R.
    Mol Biol Rep; 1983 May 17; 9(1-2):9-17. PubMed ID: 6350847
    [No Abstract] [Full Text] [Related]

  • 17. Butyrate suppression of histone deacetylation leads to accumulation of multiacetylated forms of histones H3 and H4 and increased DNase I sensitivity of the associated DNA sequences.
    Vidali G, Boffa LC, Bradbury EM, Allfrey VG.
    Proc Natl Acad Sci U S A; 1978 May 17; 75(5):2239-43. PubMed ID: 276864
    [Abstract] [Full Text] [Related]

  • 18. Partial inhibition of histone deacetylase in active chromatin by HMG 14 and HMG 17.
    Reeves R, Candido EP.
    Nucleic Acids Res; 1980 May 10; 8(9):1947-63. PubMed ID: 6448990
    [Abstract] [Full Text] [Related]

  • 19. A study of the localization of high mobility group proteins in chromatin.
    Levy WB, Dixon GH.
    Can J Biochem; 1978 Jun 10; 56(6):480-91. PubMed ID: 667694
    [Abstract] [Full Text] [Related]

  • 20. Structure of transcriptionally-active chromatin subunits.
    Gottesfeld JM, Butler PJ.
    Nucleic Acids Res; 1977 Sep 10; 4(9):3155-73. PubMed ID: 909802
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.