These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
373 related items for PubMed ID: 6220674
1. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Jong YS, Davis EJ. Arch Biochem Biophys; 1983 Apr 01; 222(1):179-91. PubMed ID: 6220674 [Abstract] [Full Text] [Related]
2. Control of cellular redox potential as measured in a steady-state, cell-free system. Burat MK, Burat T, Davis-Van Thienen WI, Davis EJ. Arch Biochem Biophys; 1984 Nov 15; 235(1):150-8. PubMed ID: 6238571 [Abstract] [Full Text] [Related]
3. Functional relationship between the ADP/ATP-carrier and the F1-ATPase in mitochondria. Vignais PV, Vignais PM, Doussiere J. Biochim Biophys Acta; 1975 Feb 17; 376(2):219-30. PubMed ID: 123160 [Abstract] [Full Text] [Related]
4. Mitochondrial respiratory control. Evidence against the regulation of respiration by extramitochondrial phosphorylation potentials or by [ATP]/[ADP] ratios. Jacobus WE, Moreadith RW, Vandegaer KM. J Biol Chem; 1982 Mar 10; 257(5):2397-402. PubMed ID: 7061429 [Abstract] [Full Text] [Related]
5. Metabolic implications of non-electrogenic ATP/ADP exchange in cancer cells: A mechanistic basis for the Warburg effect. Lemasters JJ. Biochim Biophys Acta Bioenerg; 2021 Jul 01; 1862(7):148410. PubMed ID: 33722515 [Abstract] [Full Text] [Related]
6. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK. Mol Cell Biochem; 1998 Jul 01; 184(1-2):249-89. PubMed ID: 9746325 [Abstract] [Full Text] [Related]
7. Hexokinase of rat brain mitochondria: relative importance of adenylate kinase and oxidative phosphorylation as sources of substrate ATP, and interaction with intramitochondrial compartments of ATP and ADP. BeltrandelRio H, Wilson JE. Arch Biochem Biophys; 1991 Apr 01; 286(1):183-94. PubMed ID: 1897945 [Abstract] [Full Text] [Related]
8. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria. Wanders RJ, Groen AK, Van Roermund CW, Tager JM. Eur J Biochem; 1984 Jul 16; 142(2):417-24. PubMed ID: 6086353 [Abstract] [Full Text] [Related]
9. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration. Hansford RG. Biochem J; 1975 Mar 16; 146(3):537-47. PubMed ID: 167720 [Abstract] [Full Text] [Related]
11. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts. Scholz TD, Laughlin MR, Balaban RS, Kupriyanov VV, Heineman FW. Am J Physiol; 1995 Jan 16; 268(1 Pt 2):H82-91. PubMed ID: 7840306 [Abstract] [Full Text] [Related]
12. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Ainscow EK, Brand MD. Eur J Biochem; 1999 Dec 16; 266(3):737-49. PubMed ID: 10583367 [Abstract] [Full Text] [Related]
13. Control of energy transformation of mitochondria. Analysis by a quantitative model. Bohnensack R. Biochim Biophys Acta; 1981 Jan 14; 634(1):203-18. PubMed ID: 6451238 [Abstract] [Full Text] [Related]
14. Relation between the gradient of the ATP/ADP ratio and the membrane potential across the mitochondrial membrane. Klingenberg M, Rottenberg H. Eur J Biochem; 1977 Feb 15; 73(1):125-30. PubMed ID: 14003 [Abstract] [Full Text] [Related]
15. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver. Soboll S, Scholz R, Heldt HW. Eur J Biochem; 1978 Jun 15; 87(2):377-90. PubMed ID: 668699 [Abstract] [Full Text] [Related]
16. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver. Kinnula VL, Hassinen I. Acta Physiol Scand; 1978 Sep 15; 104(1):109-16. PubMed ID: 211796 [Abstract] [Full Text] [Related]
17. Modeling of ATP-ADP steady-state exchange rate mediated by the adenine nucleotide translocase in isolated mitochondria. Metelkin E, Demin O, Kovács Z, Chinopoulos C. FEBS J; 2009 Dec 15; 276(23):6942-55. PubMed ID: 19860824 [Abstract] [Full Text] [Related]
18. Involvement of intramitochondrial adenine nucleotides and inorganic phosphate in oxidative phosphorylation of extramitochondrially added adenosine-5'-diphosphate. Hartung KJ, Böhme G, Kunz W. Biomed Biochim Acta; 1983 Dec 15; 42(1):15-26. PubMed ID: 6224484 [Abstract] [Full Text] [Related]
19. Rate control of phosphorylation-coupled respiration by rat liver mitochondria. Davis EJ, Davis-Van Thienen WI. Arch Biochem Biophys; 1984 Sep 15; 233(2):573-81. PubMed ID: 6486800 [Abstract] [Full Text] [Related]
20. The effect of orotic acid treatment on the energy and carbohydrate metabolism of the hypertrophying rat heart. Donohoe JA, Rosenfeldt FL, Munsch CM, Williams JF. Int J Biochem; 1993 Feb 15; 25(2):163-82. PubMed ID: 8444313 [Abstract] [Full Text] [Related] Page: [Next] [New Search]