These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


373 related items for PubMed ID: 6220674

  • 21. Compartmentation of adenine nucleotides in the isolated working guinea pig heart stimulated by noradrenaline.
    Soboll S, Bünger R.
    Hoppe Seylers Z Physiol Chem; 1981 Feb; 362(2):125-32. PubMed ID: 7216167
    [Abstract] [Full Text] [Related]

  • 22. Studies on the effects of coenzyme A-SH: acetyl coenzyme A, nicotinamide adenine dinucleotide: reduced nicotinamide adenine dinucleotide, and adenosine diphosphate: adenosine triphosphate ratios on the interconversion of active and inactive pyruvate dehydrogenase in isolated rat heart mitochondria.
    Hansford RG.
    J Biol Chem; 1976 Sep 25; 251(18):5483-9. PubMed ID: 184082
    [Abstract] [Full Text] [Related]

  • 23. Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP.
    Civelek VN, Deeney JT, Shalosky NJ, Tornheim K, Hansford RG, Prentki M, Corkey BE.
    Biochem J; 1996 Sep 01; 318 ( Pt 2)(Pt 2):615-21. PubMed ID: 8809055
    [Abstract] [Full Text] [Related]

  • 24. Mechanisms of oxidant-mediated cell injury. The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide.
    Hyslop PA, Hinshaw DB, Halsey WA, Schraufstätter IU, Sauerheber RD, Spragg RG, Jackson JH, Cochrane CG.
    J Biol Chem; 1988 Feb 05; 263(4):1665-75. PubMed ID: 3338986
    [Abstract] [Full Text] [Related]

  • 25. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK, Brand MD.
    Eur J Biochem; 1999 Aug 05; 263(3):671-85. PubMed ID: 10469130
    [Abstract] [Full Text] [Related]

  • 26. Parallel activation of mitochondrial oxidative metabolism with increased cardiac energy expenditure is not dependent on fatty acid oxidation in pigs.
    Zhou L, Cabrera ME, Huang H, Yuan CL, Monika DK, Sharma N, Bian F, Stanley WC.
    J Physiol; 2007 Mar 15; 579(Pt 3):811-21. PubMed ID: 17185335
    [Abstract] [Full Text] [Related]

  • 27. Stoichiometry of the H+-ATPase of growing and resting, aerobic Escherichia coli.
    Kashket ER.
    Biochemistry; 1982 Oct 26; 21(22):5534-8. PubMed ID: 6293545
    [Abstract] [Full Text] [Related]

  • 28. Relation between extra- and intramitochondrial ATP/ADP ratios in rat liver mitochondria.
    Brawand F, Folly G, Walter P.
    Biochim Biophys Acta; 1980 May 09; 590(3):285-9. PubMed ID: 6445752
    [Abstract] [Full Text] [Related]

  • 29. Control of reversible intracellular transfer of reducing potential.
    Kunz WS, Davis EJ.
    Arch Biochem Biophys; 1991 Jan 09; 284(1):40-6. PubMed ID: 1824912
    [Abstract] [Full Text] [Related]

  • 30. Regulation of oxidative phosphorylation in mitochondria of epididymal bull spermatozoa.
    Halangk W, Dietz H, Bohnensack R, Kunz W.
    Biochim Biophys Acta; 1987 Aug 12; 893(1):100-8. PubMed ID: 3607041
    [Abstract] [Full Text] [Related]

  • 31. Mathematical modeling of mitochondrial energy transduction.
    Bohnensack R.
    Biomed Biochim Acta; 1985 Aug 12; 44(6):853-62. PubMed ID: 2931077
    [Abstract] [Full Text] [Related]

  • 32. Catalytic properties of the ATPase on submitochondrial particles after exchange of tightly bound nucleotides under different steady state conditions.
    Myers JA, Boyer PD.
    FEBS Lett; 1983 Oct 17; 162(2):277-81. PubMed ID: 6226536
    [Abstract] [Full Text] [Related]

  • 33. Thermodynamic aspects of translocation of reducing equivalents by mitochondria.
    Davis EJ, Bremer J, Akerman KE.
    J Biol Chem; 1980 Mar 25; 255(6):2277-83. PubMed ID: 7358671
    [Abstract] [Full Text] [Related]

  • 34. [Effect of NAD recirculation on the mechanism of ATP stabilization in cytoplasm. Mathematical models].
    Dynnik VV, Sel'kov EE, Ovchinnikov IA.
    Biokhimiia; 1977 Sep 25; 42(9):1567-76. PubMed ID: 199286
    [Abstract] [Full Text] [Related]

  • 35. The ADP and ATP transport in mitochondria and its carrier.
    Klingenberg M.
    Biochim Biophys Acta; 2008 Oct 25; 1778(10):1978-2021. PubMed ID: 18510943
    [Abstract] [Full Text] [Related]

  • 36. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X, Sibille B, Devin A, Piquet MA, Espié P, Rigoulet M.
    Mol Cell Biochem; 1998 Jul 25; 184(1-2):53-65. PubMed ID: 9746312
    [Abstract] [Full Text] [Related]

  • 37. Intramitochondrial fatty acid activation enhances control strength of adenine nucleotide translocase.
    Schönfeld P, Bohnensack R.
    Biomed Biochim Acta; 1991 Jul 25; 50(7):841-9. PubMed ID: 1759963
    [Abstract] [Full Text] [Related]

  • 38. Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study.
    Koretsky AP, Balaban RS.
    Biochim Biophys Acta; 1987 Oct 07; 893(3):398-408. PubMed ID: 2888484
    [Abstract] [Full Text] [Related]

  • 39. Energetic aspects of transport of ADP and ATP through the mitochondrial membrane.
    Klingenberg M.
    Ciba Found Symp; 1975 Oct 07; (31):105-24. PubMed ID: 238804
    [Abstract] [Full Text] [Related]

  • 40. Effect of the extramitochondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria.
    Schild L, Gellerich FN.
    Eur J Biochem; 1998 Mar 15; 252(3):508-12. PubMed ID: 9546667
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.