These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
106 related items for PubMed ID: 6223582
1. Kinetic studies on the membrane-bound and the purified coupling factor-ATPase from Rhodopseudomonas sphaeroides. Müller H, Neufang H, Knobloch K. Arch Biochem Biophys; 1983 Jul 01; 224(1):283-9. PubMed ID: 6223582 [Abstract] [Full Text] [Related]
2. Purification and properties of the coupling-factor ATPases F1 from Rhodopseudomonas palustris and Rhodopseudomonas sphaeroides. Müller H, Neufang H, Knobloch K. Eur J Biochem; 1982 Oct 01; 127(3):559-66. PubMed ID: 6217069 [Abstract] [Full Text] [Related]
3. Membrane bound and soluble adenosine triphosphatase of Escherichia coli K 12. Kinetic properties of the basal and trypsin-stimulated activities. Carreira J, Muñoz E. Mol Cell Biochem; 1975 Nov 14; 9(2):85-95. PubMed ID: 127930 [Abstract] [Full Text] [Related]
4. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis. Syroeshkin AV, Galkin MA, Sedlov AV, Vinogradov AD. Biochemistry (Mosc); 1999 Oct 14; 64(10):1128-37. PubMed ID: 10561559 [Abstract] [Full Text] [Related]
5. Calcium binding to the H+,K(+)-ATPase. Evidence for a divalent cation site that is occupied during the catalytic cycle. Mendlein J, Ditmars ML, Sachs G. J Biol Chem; 1990 Sep 15; 265(26):15590-8. PubMed ID: 2168418 [Abstract] [Full Text] [Related]
6. Interaction of the clathrin-coated vesicle V-ATPase with ADP and sodium azide. Vasilyeva E, Forgac M. J Biol Chem; 1998 Sep 11; 273(37):23823-9. PubMed ID: 9726993 [Abstract] [Full Text] [Related]
7. Bound adenosine 5'-triphosphate formation, bound adenosine 5'-diphosphate and inorganic phosphate retention, and inorganic phosphate oxygen exchange by chloroplast adenosinetriphosphatase in the presence of Ca2+ or Mg2+. Wu D, Boyer PD. Biochemistry; 1986 Jun 03; 25(11):3390-6. PubMed ID: 2873834 [Abstract] [Full Text] [Related]
8. Properties of ATPase activity in coupling factor from Chromatium strain D chromatophores. Gepshtein A, Carmeli C. Eur J Biochem; 1977 Apr 15; 74(3):463-9. PubMed ID: 140048 [Abstract] [Full Text] [Related]
9. Adenine nucleotide binding at a noncatalytic site of mitochondrial F1-ATPase accelerates a Mg(2+)- and ADP-dependent inactivation during ATP hydrolysis. Murataliev MB. Biochemistry; 1992 Dec 29; 31(51):12885-92. PubMed ID: 1463756 [Abstract] [Full Text] [Related]
10. The role of tightly bound ADP on chloroplast ATPase. Feldman RI, Boyer PD. J Biol Chem; 1985 Oct 25; 260(24):13088-94. PubMed ID: 2865256 [Abstract] [Full Text] [Related]
11. Detection of conformational changes in chloroplast coupling factor 1 by 8-anilino-1-naphthalene-sulphonate fluorescence changes. Pick U, Finel M. Eur J Biochem; 1983 Oct 03; 135(3):559-67. PubMed ID: 6225641 [Abstract] [Full Text] [Related]
12. Influence of divalent cations on nucleotide exchange and ATPase activity of chloroplast coupling factor 1. Digel JG, Moore ND, McCarty RE. Biochemistry; 1998 Dec 08; 37(49):17209-15. PubMed ID: 9860834 [Abstract] [Full Text] [Related]
13. Significant quantities of endogenous GDP and ADP are present on catalytic sites of the F1-ATPase isolated from M. lysodeikticus in the absence of added nucleotides. Mileykovskaya EI, Kormer SS, Allison WS. Biochim Biophys Acta; 1992 Mar 13; 1099(3):219-25. PubMed ID: 1532327 [Abstract] [Full Text] [Related]
14. Metal requirements of a diadenosine pyrophosphatase from Bartonella bacilliformis: magnetic resonance and kinetic studies of the role of Mn2+. Conyers GB, Wu G, Bessman MJ, Mildvan AS. Biochemistry; 2000 Mar 07; 39(9):2347-54. PubMed ID: 10694402 [Abstract] [Full Text] [Related]
15. Effects of ATP and monovalent cations on Mg2+ inhibition of (Na,K)-ATPase. Pedemonte CH, Beaugé L. Arch Biochem Biophys; 1986 Feb 01; 244(2):596-606. PubMed ID: 3004346 [Abstract] [Full Text] [Related]
16. Investigation of the substrate structure and metal cofactor requirements of the rat liver mitochondrial ATP synthase/ATPase complex. Hanley-Trawick S, Carpen ME, Dunaway-Mariano D, Pedersen PL, Hullihen J. Arch Biochem Biophys; 1989 Jan 01; 268(1):116-23. PubMed ID: 2521440 [Abstract] [Full Text] [Related]
17. Study of the nucleotide binding site of the yeast Schizosaccharomyces pombe plasma membrane H+-ATPase using formycin triphosphate-terbium complex. Ronjat M, Lacapere JJ, Dufour JP, Dupont Y. J Biol Chem; 1987 Mar 05; 262(7):3146-53. PubMed ID: 2880848 [Abstract] [Full Text] [Related]
18. Covalent modification of the catalytic sites of the H+-ATPase from chloroplasts and 2-nitreno-ADP. Modification of the catalytic site 1 (tight) and catalytic sites 1 and 2 together impairs both uni-site and multi-site catalysis of ATP synthesis and ATP hydrolysis. Possmayer FE, Hartog AF, Berden JA, Gräber P. Biochim Biophys Acta; 2000 Jul 20; 1459(1):202-17. PubMed ID: 10924912 [Abstract] [Full Text] [Related]
19. The F1-ATPase from Streptococcus cremoris: isolation, purification and partial characterization. Rimpiläinen MA, Mettänen TT, Niskasaari K, Forsén RI. Int J Biochem; 1988 Jul 20; 20(10):1117-24. PubMed ID: 2907882 [Abstract] [Full Text] [Related]
20. Tightly bound adenosine diphosphate, which inhibits the activity of mitochondrial F1-ATPase, is located at the catalytic site of the enzyme. Drobinskaya IY, Kozlov IA, Murataliev MB, Vulfson EN. FEBS Lett; 1985 Mar 25; 182(2):419-24. PubMed ID: 2858407 [Abstract] [Full Text] [Related] Page: [Next] [New Search]