These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
120 related items for PubMed ID: 6223703
41. Polyamines permit the preparation of stable Physarum core particles which have a structure similar to those from higher eukaryotes. Stone GR, Baldwin JP, Carpenter BG. Biochim Biophys Acta; 1987 Jan 28; 908(1):34-45. PubMed ID: 3801484 [Abstract] [Full Text] [Related]
42. Enrichment of ubiquitinated histone H2A in a low salt extract of micrococcal nuclease-digested myotube nuclei. Parlow MH, Haas AL, Lough J. J Biol Chem; 1990 May 05; 265(13):7507-12. PubMed ID: 2159002 [Abstract] [Full Text] [Related]
43. The structure of sub-nucleosomal particles. The octameric (H3/H4)4--125-base-pair-DNA complex. Read CM, Crane-Robinson C. Eur J Biochem; 1985 Oct 01; 152(1):143-50. PubMed ID: 4043075 [Abstract] [Full Text] [Related]
45. Histone hyperacetylation has little effect on the higher order folding of chromatin. McGhee JD, Nickol JM, Felsenfeld G, Rau DC. Nucleic Acids Res; 1983 Jun 25; 11(12):4065-75. PubMed ID: 6866766 [Abstract] [Full Text] [Related]
46. [Nucleosomes of active chromatin from sea urchin embryo cells are rich in early histone variants]. Iasinskene NE, Iasinskas AL, Gineĭtis AA. Mol Biol (Mosk); 1988 Jun 25; 22(1):257-66. PubMed ID: 3374487 [Abstract] [Full Text] [Related]
47. [Study of the age-related features of the structural state of rat liver cell chromatin using micrococcal nuclease and circular dichroism]. Konoplia EF, Detinkin ON, Zhitkovich AV. Biokhimiia; 1988 Nov 25; 53(11):1876-82. PubMed ID: 3251551 [Abstract] [Full Text] [Related]
48. Subunit structure of chromatin and the organization of eukaryotic highly repetitive DNA: nucleosomal proteins associated with a highly repetitive mammalian DNA. Musich PR, Brown FL, Maio JJ. Proc Natl Acad Sci U S A; 1977 Aug 25; 74(8):3297-301. PubMed ID: 269392 [Abstract] [Full Text] [Related]
49. Artificial structure of chromatin derived in the preparation process. Ohba Y, Toyoda K. J Biochem; 1983 Feb 25; 93(2):513-23. PubMed ID: 6841351 [Abstract] [Full Text] [Related]
50. Nonhistone nuclear high mobility group proteins 14 and 17 stabilize nucleosome core particles. Paton AE, Wilkinson-Singley E, Olins DE. J Biol Chem; 1983 Nov 10; 258(21):13221-9. PubMed ID: 6226664 [Abstract] [Full Text] [Related]
51. Distribution of histone variants in the sea urchin chromatin fractions obtained by selective micrococcal nuclease digestion. Jasinskiene NE, Jasinskas AL, Gineitis AA. Mol Biol Rep; 1985 Oct 10; 10(4):199-203. PubMed ID: 4069105 [Abstract] [Full Text] [Related]
52. Micrococcal nuclease as a probe of DNA sequence organization and chromatin structure. Keene MA, Elgin SC. Cell; 1981 Nov 10; 27(1 Pt 2):57-64. PubMed ID: 6799212 [Abstract] [Full Text] [Related]
55. Nuclease sensitivity of active chromatin. Gazit B, Cedar H. Nucleic Acids Res; 1980 Nov 25; 8(22):5143-55. PubMed ID: 6258137 [Abstract] [Full Text] [Related]
56. Isolation of a subclass of nuclear proteins responsible for conferring a DNase I-sensitive structure on globin chromatin. Weisbrod S, Weintraub H. Proc Natl Acad Sci U S A; 1979 Feb 25; 76(2):630-4. PubMed ID: 284387 [Abstract] [Full Text] [Related]