These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Modulation of the hydrolysis rate of the ADP-insensitive phosphoenzyme of the sarcoplasmic reticulum ATPase by H+ and Mg2+. Wakabayashi S, Ogurusu T, Shigekawa M. J Biol Chem; 1987 Jul 05; 262(19):9121-9. PubMed ID: 2954958 [Abstract] [Full Text] [Related]
6. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase. Medda P, Fassold E, Hasselbach W. Eur J Biochem; 1987 Jun 01; 165(2):251-9. PubMed ID: 2954819 [Abstract] [Full Text] [Related]
7. Reaction mechanism of (Ca2+, Mg2+)-ATPase of sarcoplasmic reticulum. The role of Mg2+ that activates hydrolysis of the phosphoenzyme. Takakuwa Y, Kanazawa T. J Biol Chem; 1982 Jan 10; 257(1):426-31. PubMed ID: 6118374 [Abstract] [Full Text] [Related]
8. The substitution of calcium for magnesium in H+,K+-ATPase catalytic cycle. Evidence for two actions of divalent cations. Mendlein J, Sachs G. J Biol Chem; 1989 Nov 05; 264(31):18512-9. PubMed ID: 2553712 [Abstract] [Full Text] [Related]
9. The ADP- and Mg2+-reactive calcium complex of the phosphoenzyme in skeletal sarcoplasmic reticulum Ca2+-ATPase. Nakamura J. Biochim Biophys Acta; 1983 May 27; 723(2):182-90. PubMed ID: 6221757 [Abstract] [Full Text] [Related]
11. ATP inactivates hydrolysis of the K+-sensitive phosphoenzyme of kidney Na+,K+-transport ATPase and activates that of muscle sarcoplasmic reticulum Ca2+-transport ATPase. Fukushima Y, Yamada S, Nakao M. J Biochem; 1984 Feb 27; 95(2):359-68. PubMed ID: 6325400 [Abstract] [Full Text] [Related]
13. Stimulatory and inhibitory effects of dimethylsulfoxide, propranolol and chlorpromazine on the partial reactions of ATPase of sarcoplasmic reticulum. Shigekawa M, Akowitz AA, Katz AM. Biochim Biophys Acta; 1979 Dec 06; 548(3):433-47. PubMed ID: 159721 [Abstract] [Full Text] [Related]
14. Factors influencing calcium release from the ADP-sensitive phosphoenzyme intermediate of the sarcoplasmic reticulum ATPase. Wakabayashi S, Ogurusu T, Shigekawa M. J Biol Chem; 1986 Jul 25; 261(21):9762-9. PubMed ID: 2942534 [Abstract] [Full Text] [Related]
15. Val200 residue in Lys189-Lys205 outermost loop on the A domain of sarcoplasmic reticulum Ca2+-ATPase is critical for rapid processing of phosphoenzyme intermediate after loss of ADP sensitivity. Kato S, Kamidochi M, Daiho T, Yamasaki K, Gouli W, Suzuki H. J Biol Chem; 2003 Mar 14; 278(11):9624-9. PubMed ID: 12496291 [Abstract] [Full Text] [Related]
16. Reversal of the sarcoplasmic reticulum ATPase cycle by substituting various cations for magnesium. Phosphorylation and ATP synthesis when Ca2+ replaces Mg2+. Mintz E, Lacapère JJ, Guillain F. J Biol Chem; 1990 Nov 05; 265(31):18762-8. PubMed ID: 2146262 [Abstract] [Full Text] [Related]
17. Lanthanum inhibits steady-state turnover of the sarcoplasmic reticulum calcium ATPase by replacing magnesium as the catalytic ion. Fujimori T, Jencks WP. J Biol Chem; 1990 Sep 25; 265(27):16262-70. PubMed ID: 2144527 [Abstract] [Full Text] [Related]
18. Effect of phospholipid, detergent and protein-protein interaction on stability and phosphoenzyme isomerization of soluble sarcoplasmic reticulum Ca-ATPase. Vilsen B, Andersen JP. Eur J Biochem; 1987 Dec 30; 170(1-2):421-9. PubMed ID: 2961565 [Abstract] [Full Text] [Related]
19. The hydrolytic cycle of sarcoplasmic reticulum Ca2+-ATPase in the absence of calcium. Carvalho-Alves PC, Scofano HM. J Biol Chem; 1987 May 15; 262(14):6610-4. PubMed ID: 2952654 [Abstract] [Full Text] [Related]
20. Specific association of bromocresol purple anions with a magnesium complex of a phosphorylated intermediate during steady-state hydrolysis of ATP by the Mg2+ + Ca2+-dependent ATPase of sarcoplasmic reticulum. Nakamaru Y, Sato C. J Biochem; 1982 Feb 15; 91(2):537-51. PubMed ID: 6121795 [Abstract] [Full Text] [Related] Page: [Next] [New Search]