These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
120 related items for PubMed ID: 6238571
1. Control of cellular redox potential as measured in a steady-state, cell-free system. Burat MK, Burat T, Davis-Van Thienen WI, Davis EJ. Arch Biochem Biophys; 1984 Nov 15; 235(1):150-8. PubMed ID: 6238571 [Abstract] [Full Text] [Related]
2. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Jong YS, Davis EJ. Arch Biochem Biophys; 1983 Apr 01; 222(1):179-91. PubMed ID: 6220674 [Abstract] [Full Text] [Related]
3. Control of reversible intracellular transfer of reducing potential. Kunz WS, Davis EJ. Arch Biochem Biophys; 1991 Jan 01; 284(1):40-6. PubMed ID: 1824912 [Abstract] [Full Text] [Related]
4. Octanoate affects 2,4-dinitrophenol uncoupling in intact isolated rat hepatocytes. Sibille B, Keriel C, Fontaine E, Catelloni F, Rigoulet M, Leverve XM. Eur J Biochem; 1995 Jul 15; 231(2):498-502. PubMed ID: 7635161 [Abstract] [Full Text] [Related]
5. Operation and energy dependence of the reducing-equivalent shuttles during lactate metabolism by isolated hepatocytes. Berry MN, Phillips JW, Gregory RB, Grivell AR, Wallace PG. Biochim Biophys Acta; 1992 Sep 09; 1136(3):223-30. PubMed ID: 1520699 [Abstract] [Full Text] [Related]
6. Thermodynamic aspects of translocation of reducing equivalents by mitochondria. Davis EJ, Bremer J, Akerman KE. J Biol Chem; 1980 Mar 25; 255(6):2277-83. PubMed ID: 7358671 [Abstract] [Full Text] [Related]
7. Suppression of the mitochondrial oxidation of (-)-palmitylcarnitine by the malate-aspartate and alpha-glycerophosphate shuttles. Lumeng L, Bremer J, Davis EJ. J Biol Chem; 1976 Jan 25; 251(2):277-84. PubMed ID: 1245472 [Abstract] [Full Text] [Related]
8. Studies on the active transfer of reducing equivalents into mitochondria via the malate-aspartate shuttle. Bremer J, Davis EJ. Biochim Biophys Acta; 1975 Mar 20; 376(3):387-97. PubMed ID: 164904 [Abstract] [Full Text] [Related]
9. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Emaus RK, Grunwald R, Lemasters JJ. Biochim Biophys Acta; 1986 Jul 23; 850(3):436-48. PubMed ID: 2873836 [Abstract] [Full Text] [Related]
10. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences. Leverve X, Sibille B, Devin A, Piquet MA, Espié P, Rigoulet M. Mol Cell Biochem; 1998 Jul 23; 184(1-2):53-65. PubMed ID: 9746312 [Abstract] [Full Text] [Related]
12. Metabolic adaptation to hypoxia. Redox state of the cellular free NAD pools, phosphorylation state of the adenylate system and the (Na+-K+)-stimulated ATP-ase in rat liver. Kinnula VL, Hassinen I. Acta Physiol Scand; 1978 Sep 18; 104(1):109-16. PubMed ID: 211796 [Abstract] [Full Text] [Related]
13. Influence of the beta-hydroxybutyrate/acetoacetate ratio on the redox states of mitochondrial NAD(P) and cytochrome c systems, extramitochondrial ATP/ADP ratio and the respiration of isolated liver mitochondria in the resting state. Schönfeld P, Bohnensack R, Böhme G, Kunz W. Biomed Biochim Acta; 1983 Sep 18; 42(1):3-13. PubMed ID: 6309158 [Abstract] [Full Text] [Related]
14. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Williamson DH, Lund P, Krebs HA. Biochem J; 1967 May 18; 103(2):514-27. PubMed ID: 4291787 [Abstract] [Full Text] [Related]
15. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ, Manners DN, Clark JF, Bastin ME, Radda GK. Mol Cell Biochem; 1998 Jul 18; 184(1-2):249-89. PubMed ID: 9746325 [Abstract] [Full Text] [Related]
16. Formation of hexose 6-phosphates from lactate + pyruvate + glutamate by a cell-free system from rat liver. Stoecklin FB, Mörikofer-Zwez S, Walter P. Biochem J; 1986 May 15; 236(1):61-70. PubMed ID: 2878656 [Abstract] [Full Text] [Related]
17. Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study. Koretsky AP, Balaban RS. Biochim Biophys Acta; 1987 Oct 07; 893(3):398-408. PubMed ID: 2888484 [Abstract] [Full Text] [Related]
18. Sites of action of glucagon and other Ca2+ mobilizing hormones on the malate aspartate cycle. Strzelecki T, Strzelecka D, Koch CD, LaNoue KF. Arch Biochem Biophys; 1988 Jul 07; 264(1):310-20. PubMed ID: 2899419 [Abstract] [Full Text] [Related]
19. Changes in the cellular energy state affect the activity of the bacterial phosphotransferase system. Rohwer JM, Jensen PR, Shinohara Y, Postma PW, Westerhoff HV. Eur J Biochem; 1996 Jan 15; 235(1-2):225-30. PubMed ID: 8631333 [Abstract] [Full Text] [Related]
20. Mitochondrial membrane potential, transmembrane difference in the NAD+ redox potential and the equilibrium of the glutamate-aspartate translocase in the isolated perfused rat heart. Kauppinen RA, Hiltunen JK, Hassinen IE. Biochim Biophys Acta; 1983 Dec 30; 725(3):425-33. PubMed ID: 6652078 [Abstract] [Full Text] [Related] Page: [Next] [New Search]