These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 6244012

  • 1. Activation of the guinea pig granulocyte NAD(P)H-dependent superoxide generating enzyme: localization in a plasma membrane enriched particle and kinetics of activation.
    Cohen HJ, Chovaniec ME, Davies WA.
    Blood; 1980 Mar; 55(3):355-63. PubMed ID: 6244012
    [Abstract] [Full Text] [Related]

  • 2. Superoxide generation by digitonin-stimulated guinea pig granulocytes. A basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system.
    Cohen HJ, Chovaniec ME.
    J Clin Invest; 1978 Apr; 61(4):1081-7. PubMed ID: 26695
    [Abstract] [Full Text] [Related]

  • 3. Superoxide production by digitonin-stimulated guinea pig granulocytes. The effects of N-ethyl maleimide, divalent cations; and glycolytic and mitochondrial inhibitors on the activation of the superoxide generating system.
    Cohen HJ, Chovaniec ME.
    J Clin Invest; 1978 Apr; 61(4):1088-96. PubMed ID: 207722
    [Abstract] [Full Text] [Related]

  • 4. Chlorpromazine inhibition of granulocyte superoxide production.
    Cohen HJ, Chovaniec ME, Ellis SE.
    Blood; 1980 Jul; 56(1):23-9. PubMed ID: 6248151
    [Abstract] [Full Text] [Related]

  • 5. Opsonized zymosan-stimulated granulocytes-activation and activity of the superoxide-generating system and membrane potential changes.
    Cohen HJ, Newburger PE, Chovaniec ME, Whitin JC, Simons ER.
    Blood; 1981 Nov; 58(5):975-82. PubMed ID: 6271311
    [Abstract] [Full Text] [Related]

  • 6. Subcellular localization of O2- generating enzyme in guinea pig polymorphonuclear leukocytes; fractionation of subcellular particles by using a Percoll density gradient.
    Yamaguchi T, Sato K, Shimada K, Kakinuma K.
    J Biochem; 1982 Jan; 91(1):31-40. PubMed ID: 6279584
    [Abstract] [Full Text] [Related]

  • 7. Manganese-dependent NADPH oxidation by granulocyte particles. The role of superoxide and the nonphysiological nature of the manganese requirement.
    Curnutte JT, Karnovsky ML, Babior BM.
    J Clin Invest; 1976 Apr; 57(4):1059-67. PubMed ID: 7574
    [Abstract] [Full Text] [Related]

  • 8. Comparative study on effect of N-ethylmaleimide on the superoxide-generating system of guinea-pig eosinophils stimulated by soluble stimuli.
    Yamashita T, Someya A.
    Comp Biochem Physiol B; 1987 Apr; 87(4):969-74. PubMed ID: 2822349
    [Abstract] [Full Text] [Related]

  • 9. NADPH oxidase of human neutrophils. Subcellular localization and characterization of an arachidonate-activatable superoxide-generating system.
    Clark RA, Leidal KG, Pearson DW, Nauseef WM.
    J Biol Chem; 1987 Mar 25; 262(9):4065-74. PubMed ID: 3031060
    [Abstract] [Full Text] [Related]

  • 10. Comparative study on the stimulation of superoxide production in guinea-pig eosinophils by the calcium ionophore A23187.
    Yamashita T, Someya A.
    Biochim Biophys Acta; 1987 Mar 11; 927(3):359-65. PubMed ID: 3028495
    [Abstract] [Full Text] [Related]

  • 11. Subcellular localization and properties of the NAD(P)H oxidase from equine polymorphonuclear leukocytes.
    Heyneman RA.
    Enzyme; 1983 Mar 11; 29(3):198-207. PubMed ID: 6303778
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Comparative superoxide-generating system of granulocytes from blood and peritoneal exudates.
    Zimmerli W, Lew PD, Cohen HJ, Waldvogel FA.
    Infect Immun; 1984 Dec 11; 46(3):625-30. PubMed ID: 6094353
    [Abstract] [Full Text] [Related]

  • 14. Con-A-stimulated superoxide production by granulocytes: reversible activation of NADPH oxidase.
    Cohen HJ, Chovaniec ME, Wilson MK, Newburger PE.
    Blood; 1982 Nov 11; 60(5):1188-94. PubMed ID: 6289943
    [Abstract] [Full Text] [Related]

  • 15. Pyridine nucleotide-dependent superoxide production by a cell-free system from human granulocytes.
    Babior BM, Curnutte JT, Kipnes BS.
    J Clin Invest; 1975 Oct 11; 56(4):1035-42. PubMed ID: 239968
    [Abstract] [Full Text] [Related]

  • 16. Superoxide production by an unusual aldehyde oxidase in guinea pig granulocytes. Characterization and cytochemical localization.
    Badwey JA, Robinson JM, Karnovsky MJ, Karnovsky ML.
    J Biol Chem; 1981 Apr 10; 256(7):3479-86. PubMed ID: 6259169
    [Abstract] [Full Text] [Related]

  • 17. Response of superoxide anion production by guinea pig eosinophils to various soluble stimuli: comparison to neutrophils.
    Yamashita T, Someya A, Hara E.
    Arch Biochem Biophys; 1985 Sep 10; 241(2):447-52. PubMed ID: 2994568
    [Abstract] [Full Text] [Related]

  • 18. Effect of calcium on superoxide production by phagocytic vesicles from rabbit alveolar macrophages.
    Lew PD, Stossel TP.
    J Clin Invest; 1981 Jan 10; 67(1):1-9. PubMed ID: 6256409
    [Abstract] [Full Text] [Related]

  • 19. Purification and characterization of a membrane-bound NADPH-cytochrome c reductase capable of catalyzing menadione-dependent O2- formation in guinea pig polymorphonuclear leukocytes.
    Sakane F, Takahashi K, Koyama J.
    J Biochem; 1984 Sep 10; 96(3):671-8. PubMed ID: 6094521
    [Abstract] [Full Text] [Related]

  • 20. Presence of cytochrome b-558 in guinea-pig alveolar macrophages-subcellular localization and relationship with NADPH oxidase.
    Yamaguchi T, Kaneda M.
    Biochim Biophys Acta; 1988 May 11; 933(3):450-9. PubMed ID: 2833923
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.