These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 6248113

  • 1. Energy coupling in secondary active transport.
    West IC.
    Biochim Biophys Acta; 1980 May 27; 604(1):91-126. PubMed ID: 6248113
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Transport of sugars and amino acids in bacteria. X. Sources of energy and energy coupling reactions of the active transport systems for isoleucine and proline in E. coli.
    Kobayashi H, Kin E, Anraku Y.
    J Biochem; 1974 Aug 27; 76(2):251-61. PubMed ID: 4154322
    [No Abstract] [Full Text] [Related]

  • 4. Glutamate transport driven by an electrochemical gradient of sodium ion in membrane vesicles of Escherichia coli B.
    Hasan SM, Tsuchiya T.
    Biochem Biophys Res Commun; 1977 Sep 09; 78(1):122-8. PubMed ID: 334163
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Lack of involvement of lipoic acid in membrane-associated energy transduction in Escherichia coli.
    Singh AP, Bragg PD.
    Biochem Biophys Res Commun; 1978 Mar 15; 81(1):161-7. PubMed ID: 350226
    [No Abstract] [Full Text] [Related]

  • 11. Active transport of solutes in bacterial membrane vesicles.
    Konings WN.
    Adv Microb Physiol; 1977 Mar 15; 15():175-251. PubMed ID: 143875
    [No Abstract] [Full Text] [Related]

  • 12. Sodium-dependent glutamate transport in membrane vesicles of Escherichia coli K-12.
    Kahane S, Marcus M, Barash H, Halpern YS.
    FEBS Lett; 1975 Aug 15; 56(2):235-9. PubMed ID: 1098933
    [No Abstract] [Full Text] [Related]

  • 13. Changes in active transport, intracellular adenosine 5'-triphosphate levels, macromolecular syntheses, and glycolysis in an energy-uncoupled mutant of Escherichia coli.
    Lieberman MA, Hong JS.
    J Bacteriol; 1976 Mar 15; 125(3):1024-31. PubMed ID: 767319
    [Abstract] [Full Text] [Related]

  • 14. Energization of amino acid transport, studied for the Ehrlich ascites tumor cell.
    Christensen HN, de Cespedes C, Handlogten ME, Ronquist G.
    Biochim Biophys Acta; 1973 Dec 28; 300(4):487-522. PubMed ID: 4130564
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. The sodium, potassium-pump.
    Skou JC.
    Scand J Clin Lab Invest Suppl; 1986 Dec 28; 180():11-23. PubMed ID: 3012760
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. The maintenance of the energized membrane state and its relation to active transport in Escherichia coli.
    Rosen BP, Adler LW.
    Biochim Biophys Acta; 1975 Apr 14; 387(1):23-36. PubMed ID: 123782
    [Abstract] [Full Text] [Related]

  • 19. Thiamine transport in Escherichia coli Crookes.
    Leach FR, Carraway CA.
    Methods Enzymol; 1979 Apr 14; 62():76-91. PubMed ID: 374984
    [No Abstract] [Full Text] [Related]

  • 20. Proceedings: Bacterial active transport: characterization of transport carrier and mechanism of energy coupling.
    Anraku Y.
    J Biochem; 1976 Apr 14; 79(4):47P-48P. PubMed ID: 776960
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.