These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


273 related items for PubMed ID: 6250053

  • 1. An effect of chloride on (Na+K) co-transport in human red blood cells.
    Chipperfield AR.
    Nature; 1980 Jul 17; 286(5770):281-2. PubMed ID: 6250053
    [Abstract] [Full Text] [Related]

  • 2. Chloride dependence of frusemide- and phloretin-sensitive passive sodium and potassium fluxes in human red cells.
    Chipperfield AR.
    J Physiol; 1981 Mar 17; 312():435-44. PubMed ID: 7265002
    [Abstract] [Full Text] [Related]

  • 3. Effect of metabolic depletion on the furosemide-sensitive Na and K fluxes in human red cells.
    Dagher G, Brugnara C, Canessa M.
    J Membr Biol; 1985 Mar 17; 86(2):145-55. PubMed ID: 2993628
    [Abstract] [Full Text] [Related]

  • 4. A furosemide-sensitive cotransport of sodium plus potassium in the human red cell.
    Wiley JS, Cooper RA.
    J Clin Invest; 1974 Mar 17; 53(3):745-55. PubMed ID: 4812437
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. [Potassium ion transport in the erythrocytes of the frog Rana ridibunda].
    Agalakova NI, Lapin AV, Gusev GP.
    Zh Evol Biokhim Fiziol; 1995 Mar 17; 31(2):161-9. PubMed ID: 7483911
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. ADP+orthophosphate (P(i)) stimulates an Na/K pump-mediated coefflux of P(i) and Na in human red blood cell ghosts.
    Marín R, Hoffman JF.
    J Gen Physiol; 1994 Jul 17; 104(1):33-55. PubMed ID: 7964595
    [Abstract] [Full Text] [Related]

  • 9. Effect of ouabain and furosemide on erythrocyte sodium and phosphate transport.
    Walter U.
    Clin Pharmacol Ther; 1981 Dec 17; 30(6):709-17. PubMed ID: 6273055
    [Abstract] [Full Text] [Related]

  • 10. Intracellular sodium, potassium and magnesium concentration, ouabain-sensitive 86rubidium-uptake and sodium-efflux and Na+, K+-cotransport activity in erythrocytes of normal male subjects studied on two occasions.
    Lijnen P, Hespel P, Lommelen G, Laermans M, M'Buyamba-Kabangu JR, Amery A.
    Methods Find Exp Clin Pharmacol; 1986 Sep 17; 8(9):525-33. PubMed ID: 3773597
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Effects of pH, potential, chloride and furosemide on passive Na+ and K+ effluxes from human red blood cells.
    Zade-Oppen AM, Adragna NC, Tosteson DC.
    J Membr Biol; 1988 Aug 17; 103(3):217-25. PubMed ID: 3184174
    [Abstract] [Full Text] [Related]

  • 14. Functionally abnormal Na+-K+ pump in erythrocytes of a morbidly obese patient.
    DeLuise M, Flier JS.
    J Clin Invest; 1982 Jan 17; 69(1):38-44. PubMed ID: 6274916
    [Abstract] [Full Text] [Related]

  • 15. Anion-coupled Na efflux mediated by the human red blood cell Na/K pump.
    Dissing S, Hoffman JF.
    J Gen Physiol; 1990 Jul 17; 96(1):167-93. PubMed ID: 2212979
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Thallium and the sodium pump in human red cells.
    Cavieres JD, Ellory JC.
    J Physiol; 1974 Nov 17; 243(1):243-66. PubMed ID: 4449062
    [Abstract] [Full Text] [Related]

  • 18. Furosemide-sensitive Na+ and K+ transport and human erythrocyte volume.
    O'Neill WC, Mikkelsen RB.
    Biochim Biophys Acta; 1987 Jan 26; 896(2):196-202. PubMed ID: 3026473
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Chloride-activated passive potassium transport in human erythrocytes.
    Dunham PB, Stewart GW, Ellory JC.
    Proc Natl Acad Sci U S A; 1980 Mar 26; 77(3):1711-5. PubMed ID: 6929518
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.