These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


103 related items for PubMed ID: 625351

  • 41.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 42. The interpretation of proton magnetic resonance linewidths for lecithin dispersions. Effect of particle size and chain packing.
    Lichtenberg D, Petersen NO, Girardet JL, Kainosho M, Kroon PA, Seiter CH, Feigenson GW, Chan SI.
    Biochim Biophys Acta; 1975 Feb 28; 382(1):10-21. PubMed ID: 1122317
    [Abstract] [Full Text] [Related]

  • 43. Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers.
    Sot J, Bagatolli LA, Goñi FM, Alonso A.
    Biophys J; 2006 Feb 01; 90(3):903-14. PubMed ID: 16284266
    [Abstract] [Full Text] [Related]

  • 44. On the importance of the phosphocholine methyl groups for sphingomyelin/cholesterol interactions in membranes: a study with ceramide phosphoethanolamine.
    Térová B, Heczko R, Slotte JP.
    Biophys J; 2005 Apr 01; 88(4):2661-9. PubMed ID: 15653729
    [Abstract] [Full Text] [Related]

  • 45. Voltage-induced formation of alamethicin pores in lecithin bilayer vesicles.
    Lau AL, Chan SI.
    Biochemistry; 1976 Jun 15; 15(12):2551-5. PubMed ID: 938624
    [Abstract] [Full Text] [Related]

  • 46. Lipid phase states influence glycophorin reconstitution.
    MacDonald RI.
    Biochim Biophys Acta; 1980 Mar 27; 597(1):189-92. PubMed ID: 7370244
    [Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48. The size of lipid rafts: an atomic force microscopy study of ganglioside GM1 domains in sphingomyelin/DOPC/cholesterol membranes.
    Yuan C, Furlong J, Burgos P, Johnston LJ.
    Biophys J; 2002 May 27; 82(5):2526-35. PubMed ID: 11964241
    [Abstract] [Full Text] [Related]

  • 49. Effects of sphingomyelin, cholesterol and zinc ions on the binding, insertion and aggregation of the amyloid Abeta(1-40) peptide in solid-supported lipid bilayers.
    Devanathan S, Salamon Z, Lindblom G, Gröbner G, Tollin G.
    FEBS J; 2006 Apr 27; 273(7):1389-402. PubMed ID: 16689927
    [Abstract] [Full Text] [Related]

  • 50. Direct spectroscopic observation of inner and outer hydrocarbon chains of lipid bilayer vesicles.
    Longmuir KJ, Dahlquist FW.
    Proc Natl Acad Sci U S A; 1976 Aug 27; 73(8):2716-9. PubMed ID: 1066684
    [Abstract] [Full Text] [Related]

  • 51. Thermotropic and structural evaluation of the interaction of natural sphingomyelins with cholesterol.
    Quinn PJ, Wolf C.
    Biochim Biophys Acta; 2009 Sep 27; 1788(9):1877-89. PubMed ID: 19616506
    [Abstract] [Full Text] [Related]

  • 52. The phospholipid packing arrangement in small bilayer vesicles as revealed by proton magnetic resonance studies at 500 MHz.
    Schuh JR, Banerjee U, Müller L, Chan SI.
    Biochim Biophys Acta; 1982 May 07; 687(2):219-25. PubMed ID: 7093252
    [Abstract] [Full Text] [Related]

  • 53. Detection of lipid phase coexistence and lipid interactions in sphingomyelin/cholesterol membranes by ATR-FTIR spectroscopy.
    Arsov Z, Quaroni L.
    Biochim Biophys Acta; 2008 Apr 07; 1778(4):880-9. PubMed ID: 18191633
    [Abstract] [Full Text] [Related]

  • 54. Milk sphingomyelin domains in biomimetic membranes and the role of cholesterol: morphology and nanomechanical properties investigated using AFM and force spectroscopy.
    Guyomarc'h F, Zou S, Chen M, Milhiet PE, Godefroy C, Vié V, Lopez C.
    Langmuir; 2014 Jun 10; 30(22):6516-24. PubMed ID: 24835749
    [Abstract] [Full Text] [Related]

  • 55. Nuclear magnetic resonance studies of lipid-protein interactions. A model of the dynamics and energetics of phosphatidylcholine bilayers that contain cytochrome c oxidase.
    Longmuir KJ, Capaldi RA, Dahlquist FW.
    Biochemistry; 1977 Dec 27; 16(26):5746-55. PubMed ID: 201275
    [Abstract] [Full Text] [Related]

  • 56. Effect of lysolecithin on the structure and permeability of lecithin bilayer vesicles.
    Lee Y, Chan SI.
    Biochemistry; 1977 Apr 05; 16(7):1303-9. PubMed ID: 849419
    [Abstract] [Full Text] [Related]

  • 57. Does cholesterol preferentially pack in lipid domains with saturated sphingomyelin over phosphatidylcholine? A comprehensive monolayer study combined with grazing incidence X-ray diffraction and Brewster angle microscopy experiments.
    Wydro P, Flasiński M, Broniatowski M.
    J Colloid Interface Sci; 2013 May 01; 397():122-30. PubMed ID: 23465189
    [Abstract] [Full Text] [Related]

  • 58. Novel Raman-tagged sphingomyelin that closely mimics original raft-forming behavior.
    Cui J, Matsuoka S, Kinoshita M, Matsumori N, Sato F, Murata M, Ando J, Yamakoshi H, Dodo K, Sodeoka M.
    Bioorg Med Chem; 2015 Jul 01; 23(13):2989-94. PubMed ID: 26026768
    [Abstract] [Full Text] [Related]

  • 59. The adsorption of divalent cations to phosphatidylcholine bilayer membranes.
    McLaughlin A, Grathwohl C, McLaughlin S.
    Biochim Biophys Acta; 1978 Nov 16; 513(3):338-57. PubMed ID: 718897
    [Abstract] [Full Text] [Related]

  • 60. Structural changes in bilayer membranes by multivalent ions.
    Haller I, Freiser MJ.
    Biochim Biophys Acta; 1976 Dec 14; 455(3):739-48. PubMed ID: 999937
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 6.