These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


147 related items for PubMed ID: 6257708

  • 1. Correlation of beta-adrenergic receptor-stimulated [3H]GDP release and adenylate cyclase activation. Differences between frog and turkey erythrocyte membranes.
    Pike LJ, Lefkowitz RJ.
    J Biol Chem; 1981 Mar 10; 256(5):2207-12. PubMed ID: 6257708
    [No Abstract] [Full Text] [Related]

  • 2. Slow GDP dissociation from the guanyl nucleotide site of turkey erythrocyte membranes is not the rate limiting step in the activation of adenylate cylase by beta-adrenergic receptors.
    Levitzki A.
    FEBS Lett; 1980 Jun 16; 115(1):9-10. PubMed ID: 6248377
    [No Abstract] [Full Text] [Related]

  • 3. Slow GDP dissociation from the guanyl nucleotide-binding site of turkey erythrocyte membranes as the limiting step in the activation of adenylate cyclase by beta-adrenergic agonists.
    Swillens S, Juvent M, Dumont JE.
    FEBS Lett; 1979 Dec 15; 108(2):365-8. PubMed ID: 230088
    [No Abstract] [Full Text] [Related]

  • 4. Activation of adenylate cyclase by beta-adrenergic receptors: investigation of rate limiting steps by simultaneous assay of high affinity agonist binding and GDP release.
    De Lean A, Rouleau D, Lefkowitz RJ.
    Life Sci; 1983 Sep 05; 33(10):943-54. PubMed ID: 6310288
    [Abstract] [Full Text] [Related]

  • 5. The role of the guanine nucleotide exchange reaction in the regulation of the beta-adrenergic receptor and in the actions of catecholamines and cholera toxin on adenylate cyclase in turkey erythrocyte membranes.
    Lad PM, Nielsen TB, Preston MS, Rodbell M.
    J Biol Chem; 1980 Feb 10; 255(3):988-95. PubMed ID: 6243304
    [Abstract] [Full Text] [Related]

  • 6. Choleragen-stimulated release of guanyl nucleotides from turkey erythrocyte membranes.
    Burns DL, Moss J, Vaughan M.
    J Biol Chem; 1982 Jan 10; 257(1):32-4. PubMed ID: 6273433
    [Abstract] [Full Text] [Related]

  • 7. Regulation of hormone-receptor coupling to adenylyl cyclase. Effects of GTP and GDP.
    Iyengar R, Abramowitz J, Bordelon-Riser M, Blume AJ, Birnbaumer L.
    J Biol Chem; 1980 Nov 10; 255(21):10312-21. PubMed ID: 6253469
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Parallel modulation of catecholamine activation of adenylate cyclase and formation of the high-affinity agonist.receptor complex in turkey erythrocyte membranes by temperature and cis-vaccenic acid.
    Briggs MM, Lefkowitz RJ.
    Biochemistry; 1980 Sep 16; 19(19):4461-6. PubMed ID: 6250586
    [No Abstract] [Full Text] [Related]

  • 12. Molecular pharmacology of adenylate cyclase-coupled alpha- and beta-adrenergic receptors.
    Lefkowitz RJ, De Lean A, Hoffman BB, Stadel JM, Kent R, Michel T, Limbird L.
    Adv Cyclic Nucleotide Res; 1981 Sep 16; 14():145-61. PubMed ID: 6269377
    [No Abstract] [Full Text] [Related]

  • 13. Binding of 5'-guanylyl-imidodiphosphate to turkey erythrocyte membranes and effects on beta-adrenergic-activated adenylate cyclase.
    Spiegel AM, Aurbach GD.
    J Biol Chem; 1974 Dec 10; 249(23):7630-6. PubMed ID: 4436329
    [No Abstract] [Full Text] [Related]

  • 14. Loss of beta-adrenergic receptor-guanine nucleotide regulatory protein interactions accompanies decline in catecholamine responsiveness of adenylate cyclase in maturing rat erythrocytes.
    Limbird LE, Gill DM, Stadel JM, Hickey AR, Lefkowitz RJ.
    J Biol Chem; 1980 Mar 10; 255(5):1854-61. PubMed ID: 6243651
    [No Abstract] [Full Text] [Related]

  • 15. Lateral mobility of beta-receptors involved in adenylate cyclase activation.
    Atlas D, Volsky DJ, Levitzki A.
    Biochim Biophys Acta; 1980 Mar 27; 597(1):64-9. PubMed ID: 6245689
    [Abstract] [Full Text] [Related]

  • 16. A probe for the organization of the beta-adrenergic receptor-regulated adenylate cyclase system in turkey erythrocyte membranes by the use of a complementation assay.
    Lad PM, Nielsen TB, Rodbell M.
    FEBS Lett; 1980 Dec 29; 122(2):179-83. PubMed ID: 6258975
    [No Abstract] [Full Text] [Related]

  • 17. Isolation of adenylate cyclase-free, beta-adrenergic receptor from turkey erythrocyte membranes by affinity chromatography.
    Vauquelin G, Geynet P, Hanoune J, Strosberg AD.
    Proc Natl Acad Sci U S A; 1977 Sep 29; 74(9):3710-4. PubMed ID: 198798
    [Abstract] [Full Text] [Related]

  • 18. Enhanced adenylate cyclase activity of turkey erythrocytes following treatment with beta-adrenergic receptor antagonists.
    Peters JR, Nambi P, Sibley DR, Lefkowitz RJ.
    Eur J Pharmacol; 1984 Dec 15; 107(1):43-52. PubMed ID: 6151904
    [Abstract] [Full Text] [Related]

  • 19. Identification and regulation of beta-adrenergic receptors.
    Lefkowitz RJ.
    Adv Exp Med Biol; 1978 Dec 15; 96():137-60. PubMed ID: 24993
    [No Abstract] [Full Text] [Related]

  • 20. Differential effects of cholera toxin on guanine nucleotide regulation of beta-adrenergic agonist high affinity binding and adenylate cyclase activation in frog erythrocyte membranes.
    Stadel JM, Lefkowitz RJ.
    J Cyclic Nucleotide Res; 1981 Dec 15; 7(6):363-74. PubMed ID: 6125532
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.