These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
158 related items for PubMed ID: 6258705
1. Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn2+-, CO2+-, and Ni2+-saline solutions. Kita H, Narita K, Van der Kloot W. Brain Res; 1981 Jan 26; 205(1):111-21. PubMed ID: 6258705 [Abstract] [Full Text] [Related]
2. Effects of temperature on the decline in miniature end-plate potential frequency following a tetanus. Kita H, Narita K, van der Kloot W. Brain Res; 1980 May 26; 190(2):435-45. PubMed ID: 7370799 [Abstract] [Full Text] [Related]
3. [Tetanic potentiation of miniature end-plate potential frequency at frog neuromuscular junction in manganese solutions]. Narita K. Nihon Seirigaku Zasshi; 1985 May 26; 47(12):746-55. PubMed ID: 3007749 [Abstract] [Full Text] [Related]
4. Effects of the ionophore X-537A on acetylcholine release at the frog neuromuscular junction. Kita H, Van Der Kloot W. J Physiol; 1976 Jul 26; 259(1):177-98. PubMed ID: 182959 [Abstract] [Full Text] [Related]
5. Elevated tonicity increases miniature end-plate potential frequency during tetanic stimulation at frog neuromuscular junction in low calcium and in manganese saline solutions. Narita K, Kita H, van der Kloot W. Brain Res; 1983 Dec 19; 289(1-2):79-85. PubMed ID: 6318905 [Abstract] [Full Text] [Related]
7. Effects of lead on neuromuscular transmission in the frog. Manalis RS, Cooper GP, Pomeroy SL. Brain Res; 1984 Feb 27; 294(1):95-109. PubMed ID: 6320979 [Abstract] [Full Text] [Related]
8. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs. Narita K, Kawasaki F, Kita H. Brain Res; 1990 Mar 05; 510(2):289-95. PubMed ID: 2158851 [Abstract] [Full Text] [Related]
9. Effects of Ca2+ and other divalent cations on K(+)-evoked force production of slow muscle fibers from Rana esculenta and Rana pipiens. Krippeit-Drews P, Schmidt H. J Membr Biol; 1992 Aug 05; 129(2):211-20. PubMed ID: 1433275 [Abstract] [Full Text] [Related]
10. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction. Zengel JE, Magleby KL. J Gen Physiol; 1981 May 05; 77(5):503-29. PubMed ID: 6262429 [Abstract] [Full Text] [Related]
11. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length. Grinnell AD, Pawson PA. J Physiol; 1989 Nov 05; 418():397-410. PubMed ID: 2576068 [Abstract] [Full Text] [Related]
12. Calcium dependence of evoked transmitter release at very low quantal contents at the frog neuromuscular junction. Andreu R, Barrett EF. J Physiol; 1980 Nov 05; 308():79-97. PubMed ID: 6112267 [Abstract] [Full Text] [Related]
13. Presynaptic action of trifluoperazine at the frog neuromuscular junction. Publicover SJ. Naunyn Schmiedebergs Arch Pharmacol; 1983 Feb 05; 322(1):83-8. PubMed ID: 6133223 [Abstract] [Full Text] [Related]
14. Activation of protein kinase C increases acetylcholine release from frog motor nerves by a direct action on L-type Ca(2+) channels and apparently not by depolarisation of the terminal. Arenson MS, Evans SC. Neuroscience; 2001 Feb 05; 104(4):1157-64. PubMed ID: 11457598 [Abstract] [Full Text] [Related]
15. Differential effects of an L-type Ca2+ channel antagonist on activity- and phosphorylation-enhanced release of acetylcholine at the neuromuscular junction of the frog in vitro. Arenson MS, Gill DS. Eur J Neurosci; 1996 Mar 05; 8(3):437-45. PubMed ID: 8963434 [Abstract] [Full Text] [Related]
16. Spontaneous and evoked transmitter releases after concanavalin A treatment are affected differently by hypertonic low calcium solutions at frog neuromuscular junction. Narita K, Kawasaki F, Kita H. Brain Res; 1990 Mar 26; 512(1):33-9. PubMed ID: 2337806 [Abstract] [Full Text] [Related]
17. Alterations in spontaneous transmitter release by divalent cations after treatment of the neuromuscular junction with beta-bungarotoxin. Masukawa LM, Livengood DR. Cell Mol Neurobiol; 1982 Dec 26; 2(4):277-90. PubMed ID: 6305501 [Abstract] [Full Text] [Related]
18. Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation. Pawson PA, Grinnell AD. J Neurosci; 1990 Jun 26; 10(6):1769-78. PubMed ID: 2113085 [Abstract] [Full Text] [Related]
19. The relation between tonicity and impulse-evoked transmitter release in the frog. Kita H, Narita K, Van der Kloot W. J Physiol; 1982 Apr 26; 325():213-22. PubMed ID: 6286938 [Abstract] [Full Text] [Related]
20. Nicotinic agonists antagonize quantal size increases and evoked release at frog neuromuscular junction. Van der Kloot W. J Physiol; 1993 Aug 26; 468():567-89. PubMed ID: 8254525 [Abstract] [Full Text] [Related] Page: [Next] [New Search]