These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


117 related items for PubMed ID: 6260124

  • 1. [Signal transfer from beta-adrenergic receptor to adenylate cyclase (author's transl)].
    Pfeuffer T.
    Arzneimittelforschung; 1980; 30(11a):1987-91. PubMed ID: 6260124
    [Abstract] [Full Text] [Related]

  • 2. Mechanisms of hormone receptor-effector coupling: the beta-adrenergic receptor and adenylate cyclase.
    Lefkowitz RJ, Caron MG, Michel T, Stadel JM.
    Fed Proc; 1982 Aug; 41(10):2664-70. PubMed ID: 6125416
    [Abstract] [Full Text] [Related]

  • 3. Dual regulation of adenylate cyclase activity and hormone release in the intermediate lobe of the rat pituitary gland: evidence for the involvement of membrane components of the stimulatory beta 2-adrenergic system and of the inhibitory D-2 dopaminergic system.
    Cote TE, Frey EA, Sekura RD, Kebabian JW.
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1985 Aug; 19():151-67. PubMed ID: 2988295
    [No Abstract] [Full Text] [Related]

  • 4. [Mechanism of action of cholera toxin (author's transl)].
    Pacuszka T, Bradley RM.
    Postepy Biochem; 1980 Aug; 26(4):585-611. PubMed ID: 6113582
    [No Abstract] [Full Text] [Related]

  • 5. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells.
    Barovsky K, Pedone C, Brooker G.
    Mol Pharmacol; 1984 Mar; 25(2):256-60. PubMed ID: 6321948
    [Abstract] [Full Text] [Related]

  • 6. [Adenylate cyclase activity as linked to membrane receptor in isolated cells (author's transl)].
    Ui M, Katada T, Hazeki O.
    Tanpakushitsu Kakusan Koso; 1979 Jan 01; 24(1):57-63. PubMed ID: 219442
    [No Abstract] [Full Text] [Related]

  • 7. Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins.
    Slotkin TA, Lau C, Seidler FJ.
    Toxicol Appl Pharmacol; 1994 Dec 01; 129(2):223-34. PubMed ID: 7992312
    [Abstract] [Full Text] [Related]

  • 8. Hamster alpha 1B-adrenergic receptor directly activates Gs in the transfected Chinese hamster ovary cells.
    Horie K, Itoh H, Tsujimoto G.
    Mol Pharmacol; 1995 Sep 01; 48(3):392-400. PubMed ID: 7565618
    [Abstract] [Full Text] [Related]

  • 9. Glucocorticoids enhance intracellular signaling via adenylate cyclase at three distinct loci in the fetus: a mechanism for heterologous teratogenic sensitization?
    Slotkin TA, Lau C, McCook EC, Lappi SE, Seidler FJ.
    Toxicol Appl Pharmacol; 1994 Jul 01; 127(1):64-75. PubMed ID: 8048055
    [Abstract] [Full Text] [Related]

  • 10. The beta-adrenergic receptor and its mode of coupling to adenylate cyclase.
    Levitzki A.
    CRC Crit Rev Biochem; 1981 Jul 01; 10(2):81-112. PubMed ID: 6111420
    [Abstract] [Full Text] [Related]

  • 11. [Effectiveness of neurotransmitters on receptor membranes. b. Catecholamines].
    Tokumitsu Y, Ui M.
    Nihon Rinsho; 1984 Apr 01; 42(4):800-7. PubMed ID: 6148435
    [No Abstract] [Full Text] [Related]

  • 12. The beta-adrenergic receptor in the human neutrophil plasma membrane: receptor-cyclase uncoupling is associated with amplified GTP activation.
    Lad PM, Glovsky MM, Smiley PA, Klempner M, Reisinger DM, Richards JH.
    J Immunol; 1984 Mar 01; 132(3):1466-71. PubMed ID: 6319494
    [Abstract] [Full Text] [Related]

  • 13. Activation of adenylate cyclase from purified platelet membranes by prostaglandin E1 and its inhibition by L-epinephrine: mechanistic effects.
    Steer ML, Braun S, Lester HA, Levitzki A.
    J Cyclic Nucleotide Res; 1982 Mar 01; 8(5):309-22. PubMed ID: 7182416
    [Abstract] [Full Text] [Related]

  • 14. Biological maturation and beta-adrenergic effectors: pre- and postnatal development of the adenylate cyclase system in the rabbit heart.
    Schumacher WA, Sheppard JR, Mirkin BL.
    J Pharmacol Exp Ther; 1982 Dec 01; 223(3):587-93. PubMed ID: 6292391
    [Abstract] [Full Text] [Related]

  • 15. Mechanism of control of the turkey erythrocyte beta-adrenoceptor dependent adenylate cyclase by guanyl nucleotides: a minimum model.
    Braun S, Tolkovsky AM, Levitzki A.
    J Cyclic Nucleotide Res; 1982 Dec 01; 8(3):133-47. PubMed ID: 6300205
    [Abstract] [Full Text] [Related]

  • 16. Entamoeba invadens contains the components of a classical adrenergic signaling system.
    Frederick J, Eichinger D.
    Mol Biochem Parasitol; 2004 Oct 01; 137(2):339-43. PubMed ID: 15383304
    [Abstract] [Full Text] [Related]

  • 17. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit.
    Zeiders JL, Seidler FJ, Slotkin TA.
    J Mol Cell Cardiol; 1997 Feb 01; 29(2):603-15. PubMed ID: 9140819
    [Abstract] [Full Text] [Related]

  • 18. [beta-Adrenergic receptor and adenylate cyclase (author's transl)].
    Haga T.
    Tanpakushitsu Kakusan Koso; 1978 Sep 01; 23(9):1032-41. PubMed ID: 213817
    [No Abstract] [Full Text] [Related]

  • 19. Selective enhancement of beta-adrenergic receptor signaling by overexpression of adenylyl cyclase type 6: colocalization of receptor and adenylyl cyclase in caveolae of cardiac myocytes.
    Ostrom RS, Violin JD, Coleman S, Insel PA.
    Mol Pharmacol; 2000 May 01; 57(5):1075-9. PubMed ID: 10779394
    [Abstract] [Full Text] [Related]

  • 20. Beta-adrenergic receptors and responses in the heart.
    Reuter H, Porzig H.
    Postgrad Med J; 1981 May 01; 57 Suppl 1():62-70. PubMed ID: 6272252
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.