These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. The effect of training and physical exercise on the energetic metabolism of equine erythrocytes. Debski B. Zentralbl Veterinarmed A; 1985 Mar; 32(3):190-5. PubMed ID: 3923737 [No Abstract] [Full Text] [Related]
25. [Oxygenation curves in enzymopathic hemolytic anemias]. Rotrekl B, Prokopová M. Acta Univ Palacki Olomuc Fac Med; 1984 Mar; 106():123-31. PubMed ID: 6242617 [No Abstract] [Full Text] [Related]
27. [Comparative biochemical studies of erythrocytes from the blood of the newborn and of adults]. Witt I, Müller H, Künzer W. Klin Wochenschr; 1967 Mar 01; 45(5):262-4. PubMed ID: 4298617 [No Abstract] [Full Text] [Related]
28. Comparative activation by AMP and cyclic-AMP of rat erythrocyte and reticulocyte glycolysis. Luque J, Roncalés P, Tejero C, Pinilla M. Acta Biol Med Ger; 1977 Mar 01; 36(5-6):631-8. PubMed ID: 203150 [Abstract] [Full Text] [Related]
29. Effects of exercise and adrenaline on equine erythrocyte ATP content. Snow DH, Martin V. Res Vet Sci; 1990 Jul 01; 49(1):77-81. PubMed ID: 2382059 [Abstract] [Full Text] [Related]
30. Metabolic manipulation of key glycolytic enzymes: a novel proposal for the maintenance of red cell 2,3-DPG and ATP levels during storage. Vora S. Biomed Biochim Acta; 1987 Jul 01; 46(2-3):S285-9. PubMed ID: 3593307 [Abstract] [Full Text] [Related]
31. PH-dependent changes of 2,3-bisphosphoglycerate in human red cells during transitional and steady states in vitro. Rapoport I, Berger H, Elsner R, Rapoport S. Eur J Biochem; 1977 Mar 01; 73(2):421-7. PubMed ID: 14829 [Abstract] [Full Text] [Related]
32. Enzymatic pattern of glucose metabolic pathways in pyruvate kinase-deficient erythrocytes. Gumińska M, Wazewska-Czyzewska M. Clin Chim Acta; 1975 Oct 15; 64(2):165-72. PubMed ID: 126827 [Abstract] [Full Text] [Related]
33. [Mutual regulation between erythrocyte 2,3 diphosphoglycerate (DPG) and phosphofructokinase: observations on enzyme deficient red cells]. Tarui S, Ichihara K, Kono N. Nihon Rinsho; 1973 Aug 10; 31(8):2429-34. PubMed ID: 4271914 [No Abstract] [Full Text] [Related]
34. Endogenous phosphorylation of soluble enzymes in human red cells. Cyclic 3',5'-AMP-dependent phosphorylation of phosphofructokinase without detectable regulatory effect. Lagrange JL, Marie J, Cottreau D, Fischer S, Kahn A. Biochim Biophys Acta; 1980 Mar 14; 612(1):213-25. PubMed ID: 6244850 [Abstract] [Full Text] [Related]
35. On the regulation of 2,3-diphosphoglycerate concentration in the erythrocytes of newborns with transitory hyperbilirubinemia. Petrich C, Göbel U. Z Kinderheilkd; 1974 Mar 14; 117(2):121-6. PubMed ID: 4420756 [No Abstract] [Full Text] [Related]
36. Effects of bilirubin on red cell metabolism. Petrich C, Krieg W, Voss HV, Göbel U. J Clin Chem Clin Biochem; 1977 Feb 14; 15(2):77-80. PubMed ID: 845546 [Abstract] [Full Text] [Related]
37. Red blood cell metabolism and function in transfused beta-thalassemia. de Furia FG, Miller DR, Canale VC. Ann N Y Acad Sci; 1974 Feb 14; 232(0):323-32. PubMed ID: 4278245 [No Abstract] [Full Text] [Related]
38. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187. Campbell AK, Siddle K. Biochem J; 1976 Aug 15; 158(2):211-21. PubMed ID: 186033 [Abstract] [Full Text] [Related]
39. [Level of 2,3-diphosphoglycerate and adenosine triphosphate in erythrocytes and acid-base status in adult and newborn rats in acute hypoxia]. Alatyrtsev VV, Aleksandrov AE, Lekmanov AU, Bakanov MI. Biull Eksp Biol Med; 1995 Jun 15; 119(6):631-3. PubMed ID: 8589391 [No Abstract] [Full Text] [Related]
40. Effect of vibration on red cell metabolism. Andrzejak R, Smolik R. Int Arch Occup Environ Health; 1984 Jun 15; 54(4):303-8. PubMed ID: 6239827 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]