These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
274 related items for PubMed ID: 6260814
1. Structural changes after transmitter release at the frog neuromuscular junction. Heuser JE, Reese TS. J Cell Biol; 1981 Mar; 88(3):564-80. PubMed ID: 6260814 [Abstract] [Full Text] [Related]
2. Endocytosis of synaptic vesicle membrane at the frog neuromuscular junction. Miller TM, Heuser JE. J Cell Biol; 1984 Feb; 98(2):685-98. PubMed ID: 6607255 [Abstract] [Full Text] [Related]
3. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L. J Cell Biol; 1979 May; 81(2):275-300. PubMed ID: 38256 [Abstract] [Full Text] [Related]
4. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. Heuser JE, Reese TS. J Cell Biol; 1973 May; 57(2):315-44. PubMed ID: 4348786 [Abstract] [Full Text] [Related]
5. Increase in the number of presynaptic large intramembrane particles during synaptic transmission at the Torpedo nerve-electroplaque junction. Garcia-Segura LM, Muller D, Dunant Y. Neuroscience; 1986 Sep; 19(1):63-79. PubMed ID: 3024064 [Abstract] [Full Text] [Related]
6. Regeneration of the active zone at the frog neuromuscular junction. Ko CP. J Cell Biol; 1984 May; 98(5):1685-95. PubMed ID: 6327719 [Abstract] [Full Text] [Related]
7. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. III. A morphometric analysis of the number and diameter of intramembrane particles. Fesce R, Grohovaz F, Hurlbut WP, Ceccarelli B. J Cell Biol; 1980 May; 85(2):337-45. PubMed ID: 6103002 [Abstract] [Full Text] [Related]
8. The effect of potassium on exocytosis of transmitter at the frog neuromuscular junction. Ceccarelli B, Fesce R, Grohovaz F, Haimann C. J Physiol; 1988 Jul; 401():163-83. PubMed ID: 2902217 [Abstract] [Full Text] [Related]
9. Freeze-fracture studies of frog neuromuscular junctions during intense release of neurotransmitter. I. Effects of black widow spider venom and Ca2+-free solutions on the structure of the active zone. Ceccarelli B, Grohovaz F, Hurlbut WP. J Cell Biol; 1979 Apr; 81(1):163-77. PubMed ID: 39079 [Abstract] [Full Text] [Related]
10. Action of brown widow spider venom and botulinum toxin on the frog neuromuscular junction examined with the freeze-fracture technique. Pumplin DW, Reese TS. J Physiol; 1977 Dec; 273(2):443-57. PubMed ID: 202700 [Abstract] [Full Text] [Related]
11. Optical monitoring of transmitter release and synaptic vesicle recycling at the frog neuromuscular junction. Betz WJ, Bewick GS. J Physiol; 1993 Jan; 460():287-309. PubMed ID: 8387585 [Abstract] [Full Text] [Related]
12. Structural and functional correlates of synaptic transmission in the vertebrate neuromuscular junction. Rash JE, Walrond JP, Morita M. J Electron Microsc Tech; 1988 Oct; 10(2):153-85. PubMed ID: 2852716 [Abstract] [Full Text] [Related]
13. Ultrastructural distribution of synaptophysin and synaptic vesicle recycling at the frog neuromuscular junction. Colasante C, Pécot-Dechavassine M. J Neurosci Res; 1996 May 01; 44(3):272-82. PubMed ID: 8723766 [Abstract] [Full Text] [Related]
14. Incorporation of vesicular antigens into the presynaptic membrane during exocytosis at the frog neuromuscular junction: a light and electron microscopy immunochemical study. Robitaille R, Tremblay JP. Neuroscience; 1987 May 01; 21(2):619-29. PubMed ID: 3039406 [Abstract] [Full Text] [Related]
15. Quantal acetylcholine release: vesicle fusion or intramembrane particles? Dunant Y. Microsc Res Tech; 2000 Apr 01; 49(1):38-46. PubMed ID: 10757877 [Abstract] [Full Text] [Related]
16. Membrane cholesterol regulates different modes of synaptic vesicle release and retrieval at the frog neuromuscular junction. Rodrigues HA, Lima RF, Fonseca Mde C, Amaral EA, Martinelli PM, Naves LA, Gomez MV, Kushmerick C, Prado MA, Guatimosim C. Eur J Neurosci; 2013 Oct 01; 38(7):2978-87. PubMed ID: 23841903 [Abstract] [Full Text] [Related]
17. Electrophysiological and freeze-fracture studies of changes following denervation at frog neuromuscular junctions. Ko CP. J Physiol; 1981 Dec 01; 321():627-39. PubMed ID: 6279825 [Abstract] [Full Text] [Related]
18. Disruption of active zones in frog neuromuscular junctions following treatment with proteolytic enzymes. Nystrom RR, Ko CP. J Neurocytol; 1988 Feb 01; 17(1):63-71. PubMed ID: 3047325 [Abstract] [Full Text] [Related]
19. Reversible depletion of synaptic vesicles induced by application of high external potassium to the frog neuromuscular junction. Gennaro JF, Nastuk WL, Rutherford DT. J Physiol; 1978 Jul 01; 280():237-47. PubMed ID: 308538 [Abstract] [Full Text] [Related]
20. Synaptic vesicle recycling at the neuromuscular junction in the presence of a presynaptic membrane marker. Lentz TL, Chester J. Neuroscience; 1982 Jan 01; 7(1):9-20. PubMed ID: 6176905 [Abstract] [Full Text] [Related] Page: [Next] [New Search]