These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 6262301

  • 1. Reduction of adriamycin to a semiquinone-free radical by NADPH cytochrome P-450 reductase produces DNA cleavage in a reaction mediated by molecular oxygen.
    Berlin V, Haseltine WA.
    J Biol Chem; 1981 May 25; 256(10):4747-56. PubMed ID: 6262301
    [Abstract] [Full Text] [Related]

  • 2. Enzymic- and thiol-mediated activation of halogen-substituted diaziridinylbenzoquinones: redox transitions of the semiquinone and semiquinone-thioether species.
    Goin J, Giulivi C, Butler J, Cadenas E.
    Free Radic Biol Med; 1995 Mar 25; 18(3):525-36. PubMed ID: 9101243
    [Abstract] [Full Text] [Related]

  • 3. NADPH cytochrome P-450 reductase activation of quinone anticancer agents to free radicals.
    Bachur NR, Gordon SL, Gee MV, Kon H.
    Proc Natl Acad Sci U S A; 1979 Feb 25; 76(2):954-7. PubMed ID: 34156
    [Abstract] [Full Text] [Related]

  • 4. Clear evidence for the participation of OH in lambda DNA breakage induced by the enzymatic reduction of adriamycin in the presence of iron-ADP. Importance of local OH concentration for DNA strand cleavage.
    Sugioka K, Nakano H, Tsuchiya J, Nakano M, Sugioka Y, Tero-Kubota S, Ikegami Y.
    Biochem Int; 1984 Aug 25; 9(2):237-42. PubMed ID: 6435634
    [Abstract] [Full Text] [Related]

  • 5. Adriamycin-enhanced membrane lipid peroxidation in isolated rat nuclei.
    Mimnaugh EG, Kennedy KA, Trush MA, Sinha BK.
    Cancer Res; 1985 Jul 25; 45(7):3296-304. PubMed ID: 2988766
    [Abstract] [Full Text] [Related]

  • 6. DNA damage by superoxide-generating systems in relation to the mechanism of action of the anti-tumour antibiotic adriamycin.
    Rowley DA, Halliwell B.
    Biochim Biophys Acta; 1983 Nov 22; 761(1):86-93. PubMed ID: 6315070
    [Abstract] [Full Text] [Related]

  • 7. Generation of hydroxyl radical by anticancer quinone drugs, carbazilquinone, mitomycin C, aclacinomycin A and adriamycin, in the presence of NADPH-cytochrome P-450 reductase.
    Komiyama T, Kikuchi T, Sugiura Y.
    Biochem Pharmacol; 1982 Nov 15; 31(22):3651-6. PubMed ID: 6295407
    [Abstract] [Full Text] [Related]

  • 8. Oxygen consumption and oxyradical production from microsomal reduction of aqueous extracts of cigarette tar.
    Winston GW, Church DF, Cueto R, Pryor WA.
    Arch Biochem Biophys; 1993 Aug 01; 304(2):371-8. PubMed ID: 8394056
    [Abstract] [Full Text] [Related]

  • 9. Free radical formation and DNA strand breakage during metabolism of diaziquone by NAD(P)H quinone-acceptor oxidoreductase (DT-diaphorase) and NADPH cytochrome c reductase.
    Fisher GR, Gutierrez PL.
    Free Radic Biol Med; 1991 Aug 01; 11(6):597-607. PubMed ID: 1663902
    [Abstract] [Full Text] [Related]

  • 10. NADPH-dependent production of oxy radicals by purified components of the rat liver mixed function oxidase system. I. Oxidation of hydroxyl radical scavenging agents.
    Winston GW, Cederbaum AI.
    J Biol Chem; 1983 Feb 10; 258(3):1508-13. PubMed ID: 6296101
    [Abstract] [Full Text] [Related]

  • 11. Interactions of anticancer quinone drugs, aclacinomycin A, adriamycin, carbazilquinone, and mitomycin C, with NADPH-cytochrome P-450 reductase, xanthine oxidase and oxygen.
    Komiyama T, Kikuchi T, Sugiura Y.
    J Pharmacobiodyn; 1986 Aug 10; 9(8):651-64. PubMed ID: 3023600
    [Abstract] [Full Text] [Related]

  • 12. Hydroxyl radical generation and DNA strand scission mediated by natural anticancer and synthetic quinones.
    Rumyantseva GV, Weiner LM, Frolova EI, Fedorova OS.
    FEBS Lett; 1989 Jan 02; 242(2):397-400. PubMed ID: 2536625
    [Abstract] [Full Text] [Related]

  • 13. DNA strand scission by polycyclic aromatic hydrocarbon o-quinones: role of reactive oxygen species, Cu(II)/Cu(I) redox cycling, and o-semiquinone anion radicals,
    Flowers L, Ohnishi ST, Penning TM.
    Biochemistry; 1997 Jul 15; 36(28):8640-8. PubMed ID: 9214311
    [Abstract] [Full Text] [Related]

  • 14. Adriamycin activation and oxygen free radical formation in human breast tumor cells: protective role of glutathione peroxidase in adriamycin resistance.
    Sinha BK, Mimnaugh EG, Rajagopalan S, Myers CE.
    Cancer Res; 1989 Jul 15; 49(14):3844-8. PubMed ID: 2544260
    [Abstract] [Full Text] [Related]

  • 15. Enzymatic activation and binding of adriamycin to nuclear DNA.
    Sinha BK, Trush MA, Kennedy KA, Mimnaugh EG.
    Cancer Res; 1984 Jul 15; 44(7):2892-6. PubMed ID: 6327028
    [Abstract] [Full Text] [Related]

  • 16. Generation of hydroxyl radicals during the enzymatic reductions of the Fe3+-ADP-phosphate-adriamycin and Fe3+-ADP-EDTA systems. Less involvement of hydroxyl radical and a great importance of proposed perferryl ion complexes in lipid peroxidation.
    Sugioka K, Nakano H, Nakano M, Tero-Kubota S, Ikegami Y.
    Biochim Biophys Acta; 1983 Oct 11; 753(3):411-21. PubMed ID: 6311278
    [Abstract] [Full Text] [Related]

  • 17. Bioreduction of idarubicin and formation of ROS responsible for DNA cleavage by NADPH-cytochrome P450 reductase and its potential role in the antitumor effect.
    Celik H, Arinç E.
    J Pharm Pharm Sci; 2008 Oct 11; 11(4):68-82. PubMed ID: 19183515
    [Abstract] [Full Text] [Related]

  • 18. Involvement of NADPH: cytochrome P450 reductase in the activation of indoloquinone EO9 to free radical and DNA damaging species.
    Bailey SM, Lewis AD, Patterson LH, Fisher GR, Knox RJ, Workman P.
    Biochem Pharmacol; 2001 Aug 15; 62(4):461-8. PubMed ID: 11448456
    [Abstract] [Full Text] [Related]

  • 19. Free radical production from normal and adriamycin-treated rat cardiac sarcosomes.
    Thornalley PJ, Dodd NJ.
    Biochem Pharmacol; 1985 Mar 01; 34(5):669-74. PubMed ID: 2983734
    [Abstract] [Full Text] [Related]

  • 20. The effect of the anthrapyrazole antitumour agent CI941 on rat liver microsome and cytochrome P-450 reductase mediated free radical processes. Inhibition of doxorubicin activation in vitro.
    Graham MA, Newell DR, Butler J, Hoey B, Patterson LH.
    Biochem Pharmacol; 1987 Oct 15; 36(20):3345-51. PubMed ID: 2823819
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.