These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


162 related items for PubMed ID: 6265213

  • 1. The influence of elongation-factor-Tu . GTP and anticodon-anticodon interactions on the anticodon loop conformation of yeast tRNATyr.
    Weygand-Durasevic I, Kruse TA, Clark BF.
    Eur J Biochem; 1981 May; 116(1):59-65. PubMed ID: 6265213
    [Abstract] [Full Text] [Related]

  • 2. Interaction of elongation factor Tu with the aminoacyl transfer ribonucleic acid dimer Phe-tRNA-Glu-tRNA.
    Yamane T, Miller DL, Hopfield JJ.
    Biochemistry; 1981 Jan 20; 20(2):449-52. PubMed ID: 7008845
    [Abstract] [Full Text] [Related]

  • 3. Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA.
    Hornig H, Woolley P, Lührmann R.
    J Biol Chem; 1984 May 10; 259(9):5632-6. PubMed ID: 6371008
    [Abstract] [Full Text] [Related]

  • 4. [Mechanism of the stereospecific stabilization of codon-anticodon complexes in ribosomes during translation].
    Potapov AP.
    Zh Obshch Biol; 1985 May 10; 46(1):63-77. PubMed ID: 3885616
    [No Abstract] [Full Text] [Related]

  • 5. Binding of spermine to tRNATyr stabilizes the conformation of the anticodon loop and creates strong binding sites for divalent cations.
    Nöthig-Laslo V, Weygand-Durasević I, Zivković T, Kućan Z.
    Eur J Biochem; 1981 Jul 10; 117(2):263-7. PubMed ID: 6268406
    [Abstract] [Full Text] [Related]

  • 6. Involvement of the 3' side of the anticodon loop of yeast tRNATyr in messenger-free binding to ribosomes. An electron-spin resonance study.
    Weygand-Durasević I, Nöthig-Laslo V, Kućan Z.
    Eur J Biochem; 1984 Mar 15; 139(3):541-5. PubMed ID: 6321181
    [Abstract] [Full Text] [Related]

  • 7. [Mechanism of codon-anticodon interaction in ribosomes. Interaction of aminoacyl-tRNA with 70S ribosomes in the absence of elongation factor EF-Tu and GTP].
    Kemkhadze KSh, Odintsov VB, Makhno VI, Semenkov IuP, Kirillov SV.
    Mol Biol (Mosk); 1981 Mar 15; 15(4):779-89. PubMed ID: 6912382
    [Abstract] [Full Text] [Related]

  • 8. Specificity of elongation factor Tu from Escherichia coli with respect to attachment to the amino acid to the 2' or 3'-hydroxyl group of the terminal adenosine of tRNA.
    Sprinzl M, Kucharzewski M, Hobbs JB, Cramer F.
    Eur J Biochem; 1977 Aug 15; 78(1):55-61. PubMed ID: 334535
    [Abstract] [Full Text] [Related]

  • 9. Changes in aminoacyl transfer ribonucleic acid conformation upon association with elongation factor Tu-guanosine 5'-triphosphate. fluorescence studies of ternary complex conformation and topology.
    Adkins HJ, Miller DL, Johnson AE.
    Biochemistry; 1983 Mar 01; 22(5):1208-17. PubMed ID: 6551178
    [Abstract] [Full Text] [Related]

  • 10. Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes.
    Jacquet E, Parmeggiani A.
    Eur J Biochem; 1989 Nov 06; 185(2):341-6. PubMed ID: 2684669
    [Abstract] [Full Text] [Related]

  • 11. Crystal structure of the ternary complex of Phe-tRNAPhe, EF-Tu, and a GTP analog.
    Nissen P, Kjeldgaard M, Thirup S, Polekhina G, Reshetnikova L, Clark BF, Nyborg J.
    Science; 1995 Dec 01; 270(5241):1464-72. PubMed ID: 7491491
    [Abstract] [Full Text] [Related]

  • 12. Three modified nucleosides present in the anticodon stem and loop influence the in vivo aa-tRNA selection in a tRNA-dependent manner.
    Li J, Esberg B, Curran JF, Björk GR.
    J Mol Biol; 1997 Aug 15; 271(2):209-21. PubMed ID: 9268653
    [Abstract] [Full Text] [Related]

  • 13. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F, Dell VA, Abrahamson JK, Watson BS, Miller DL, Johnson AE.
    Biochemistry; 1990 May 08; 29(18):4268-77. PubMed ID: 2190631
    [Abstract] [Full Text] [Related]

  • 14. Aminoacylation of anticodon loop substituted yeast tyrosine transfer RNA.
    Bare L, Uhlenbeck OC.
    Biochemistry; 1985 Apr 23; 24(9):2354-60. PubMed ID: 3846456
    [Abstract] [Full Text] [Related]

  • 15. Conformational changes of aminoacyl-tRNA and uncharged tRNA upon complex formation with polypeptide chain elongation factor Tu.
    Haruki M, Matsumoto R, Hara-Yokoyama M, Miyazawa T, Yokoyama S.
    FEBS Lett; 1990 Apr 24; 263(2):361-4. PubMed ID: 2335240
    [Abstract] [Full Text] [Related]

  • 16. A small-angle X-ray scattering study of the complex formation between elongation factor Tu . GTP and valyl-tRNA Val I from Escherichia coli.
    Osterberg R, Sjöberg B, Ligaarden R, Elias P.
    Eur J Biochem; 1981 Jun 24; 117(1):155-9. PubMed ID: 7021154
    [Abstract] [Full Text] [Related]

  • 17. Molecular biology. A renewed focus on transfer RNA.
    Daviter T, Murphy FV, Ramakrishnan V.
    Science; 2005 May 20; 308(5725):1123-4. PubMed ID: 15905389
    [No Abstract] [Full Text] [Related]

  • 18. The site of interaction of aminoacyl-tRNA with elongation factor Tu.
    Wikman FP, Siboska GE, Petersen HU, Clark BF.
    EMBO J; 1982 May 20; 1(9):1095-100. PubMed ID: 6765239
    [Abstract] [Full Text] [Related]

  • 19. Transient kinetics of transfer ribonucleic acid binding to the ribosomal A and P sites: observation of a common intermediate complex.
    Wintermeyer W, Robertson JM.
    Biochemistry; 1982 Apr 27; 21(9):2246-52. PubMed ID: 7046798
    [No Abstract] [Full Text] [Related]

  • 20. Crosslinking of elongation factor Tu to tRNA(Phe) by trans-diamminedichloroplatinum (II). Characterization of two crosslinking sites in the tRNA.
    Wikman FP, Romby P, Metz MH, Reinbolt J, Clark BF, Ebel JP, Ehresmann C, Ehresmann B.
    Nucleic Acids Res; 1987 Jul 24; 15(14):5787-801. PubMed ID: 3302946
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.