These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


126 related items for PubMed ID: 6266505

  • 1. [Analysis of the excitable properties of an artificial membrane containing amphotericin B in the presence of cationic blockers].
    Markevich NN.
    Biofizika; 1981; 26(2):260-4. PubMed ID: 6266505
    [Abstract] [Full Text] [Related]

  • 2. [History and importance of electrically excitable artificial membranes].
    Monnier AM.
    Rev Can Biol Exp; 1982 Mar; 41(1):47-63. PubMed ID: 7048441
    [Abstract] [Full Text] [Related]

  • 3. Mechanism of blockage of amphotericin B channels in a lipid bilayer.
    Borisova MP, Ermishkin LN, Silberstein AY.
    Biochim Biophys Acta; 1979 Jun 02; 553(3):450-9. PubMed ID: 454595
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. [Amphotericin B channel conductance inactivation].
    Ibragimova VKh, Alieva IN, Aliev DI.
    Tsitologiia; 2003 Jun 02; 45(8):804-11. PubMed ID: 15216632
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A new double-chamber model of ion channels. Beyond the Hodgkin and Huxley model.
    Dołowy K.
    Cell Mol Biol Lett; 2003 Jun 02; 8(3):749-75. PubMed ID: 12949615
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Periodicity in Na(+) channel properties alters excitability of a model neuron.
    Majumdar S, Sikdar SK.
    Biochem Biophys Res Commun; 2007 Aug 10; 359(4):908-14. PubMed ID: 17562325
    [Abstract] [Full Text] [Related]

  • 11. [The electric potential at the entrance of the amphotericin channel].
    Gadzhi-zade KhA.
    Biofizika; 1983 Aug 10; 28(6):999-1001. PubMed ID: 6317060
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. The rise and fall of electrical excitability in the oocyte of Xenopus laevis.
    Kado RT, Baud C.
    J Physiol (Paris); 1981 May 10; 77(9):1113-7. PubMed ID: 6286961
    [Abstract] [Full Text] [Related]

  • 14. [Nature of the dependence of ion channel blockade on the membrane potential].
    Gadzhi-Zade KhA, Zil'bershteĭn AIa.
    Dokl Akad Nauk SSSR; 1984 May 10; 275(5):1204-7. PubMed ID: 6329620
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Mathematical simulations of the effects of altered AMP-kinase activity on I and the action potential in rat ventricle.
    Bazzazi H, Clark RB, Giles WR.
    J Cardiovasc Electrophysiol; 2006 May 10; 17 Suppl 1():S162-S168. PubMed ID: 16686674
    [Abstract] [Full Text] [Related]

  • 18. A molecular model of membrane excitability.
    Baumann G, Mueller P.
    J Supramol Struct; 1974 May 10; 2(5-6):538-57. PubMed ID: 4461846
    [No Abstract] [Full Text] [Related]

  • 19. [resonant events in membranes having ion channels with two conformational states].
    Markevich NI, Sel'kov EE.
    Biofizika; 1983 May 10; 28(2):260-5. PubMed ID: 6303447
    [Abstract] [Full Text] [Related]

  • 20. Aqueous ion channels.
    Edmonds DT.
    Biochem Soc Symp; 1981 May 10; (46):91-101. PubMed ID: 6279101
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.