These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


156 related items for PubMed ID: 6266871

  • 1. The isolated F0 of Escherichia coli aTP-synthase is reconstitutively active in H+-conduction and ATP-dependent energy-transduction.
    Friedl P, Schairer HU.
    FEBS Lett; 1981 Jun 15; 128(2):261-4. PubMed ID: 6266871
    [No Abstract] [Full Text] [Related]

  • 2. F0 of Escherichia coli ATP-synthase containing mutant and wild-type carbodiimide-binging proteins is impaired in H+ -conduction.
    Friedl P, Friedl C, Schairer HU.
    FEBS Lett; 1980 Oct 06; 119(2):254-6. PubMed ID: 6253323
    [No Abstract] [Full Text] [Related]

  • 3. Subunit specific antisera to the Escherichia coli ATP synthase: effects on ATPase activity, energy transduction, and enzyme assembly.
    Smith JB, Sternweis PC.
    Arch Biochem Biophys; 1982 Aug 06; 217(1):376-87. PubMed ID: 6181743
    [No Abstract] [Full Text] [Related]

  • 4. Topological and functional aspects of the proton conductor, F0, of the Escherichia coli ATP-synthase.
    Schairer HU, Hoppe J, Sebald W, Friedl P.
    Biosci Rep; 1982 Aug 06; 2(8):631-9. PubMed ID: 6291669
    [Abstract] [Full Text] [Related]

  • 5. An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel.
    Hoppe J, Schairer HU, Friedl P, Sebald W.
    FEBS Lett; 1982 Aug 16; 145(1):21-9. PubMed ID: 6290265
    [No Abstract] [Full Text] [Related]

  • 6. The dicyclohexylcarbodiimide-binding protein c of ATP synthase from Escherichia coli is not sufficient to express an efficient H+ conduction.
    Friedl P, Bienhaus G, Hoppe J, Schairer HU.
    Proc Natl Acad Sci U S A; 1981 Nov 16; 78(11):6643-6. PubMed ID: 6273880
    [Abstract] [Full Text] [Related]

  • 7. Polymorphism and conformational dynamics of F1-ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity.
    Muñoz E.
    Biochim Biophys Acta; 1982 May 12; 650(4):233-65. PubMed ID: 6178434
    [No Abstract] [Full Text] [Related]

  • 8. The ATP synthetase of Escherichia coli K12: purification of the enzyme and reconstitution of energy-transducing activities.
    Friedl P, Friedl C, Schairer HU.
    Eur J Biochem; 1979 Oct 12; 100(1):175-80. PubMed ID: 226359
    [Abstract] [Full Text] [Related]

  • 9. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold.
    Walker JE, Saraste M, Runswick MJ, Gay NJ.
    EMBO J; 1982 Oct 12; 1(8):945-51. PubMed ID: 6329717
    [Abstract] [Full Text] [Related]

  • 10. Subunit b of the membrane moiety (F0) of ATP synthase (F1F0) from Escherichia coli is indispensable for H+ translocation and binding of the water-soluble F1 moiety.
    Schneider E, Altendorf K.
    Proc Natl Acad Sci U S A; 1984 Dec 12; 81(23):7279-83. PubMed ID: 6209711
    [Abstract] [Full Text] [Related]

  • 11. The DCCD-reactive aspartyl-residue of subunit C from the Escherichia coli ATP-synthase is important for the conformation of F0.
    Friedl P, Hoppe J, Schairer HU.
    Biochem Biophys Res Commun; 1984 Apr 30; 120(2):527-33. PubMed ID: 6329170
    [Abstract] [Full Text] [Related]

  • 12. Energy-dependent changes in the conformation of the chloroplast ATP synthase and its catalytic activity.
    Komatsu-Takaki M.
    Eur J Biochem; 1993 Jun 01; 214(2):587-91. PubMed ID: 8390356
    [Abstract] [Full Text] [Related]

  • 13. Chemical modification of the F0 part of the ATP synthase (F1F0) from Escherichia coli. Effects on proton conduction and F1 binding.
    Steffens K, Schneider E, Herkenhoff B, Schmid R, Altendorf K.
    Eur J Biochem; 1984 Feb 01; 138(3):617-22. PubMed ID: 6319139
    [Abstract] [Full Text] [Related]

  • 14. Estimation of H+ to adenosine 5'-triphosphate stoichiometry of Escherichia coli ATP synthase using 31P NMR.
    Vink R, Bendall MR, Simpson SJ, Rogers PJ.
    Biochemistry; 1984 Jul 31; 23(16):3667-75. PubMed ID: 6089877
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. 31p NMR saturation transfer measurements of the steady state rates of creatine kinase and ATP synthetase in the rat brain.
    Shoubridge EA, Briggs RW, Radda GK.
    FEBS Lett; 1982 Apr 19; 140(2):289-92. PubMed ID: 6282642
    [No Abstract] [Full Text] [Related]

  • 18. [Catalytic properties of mitochondrial ATP-synthetase].
    Vinogradov AD.
    Biokhimiia; 1984 Aug 19; 49(8):1220-38. PubMed ID: 6093895
    [No Abstract] [Full Text] [Related]

  • 19. Cross-linking and labeling of the Escherichia coli F1F0-ATP synthase reveal a compact hydrophilic portion of F0 close to an F1 catalytic subunit.
    Aris JP, Simoni RD.
    J Biol Chem; 1983 Dec 10; 258(23):14599-609. PubMed ID: 6315730
    [Abstract] [Full Text] [Related]

  • 20. ATP-synthetase complex (F1F0) from Escherichia coli. Purification and characterization of subunits A and B of the F0 part.
    Steffens K, Kiltz HH, Schneider E, Schmid R, Altendorf K.
    FEBS Lett; 1982 Jun 01; 142(1):151-4. PubMed ID: 6286344
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.