These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 6284218

  • 1. Oxidation-reduction potentials of respiratory chain components in Thiobacillus A2.
    Kula TJ, Aleem MI, Wilson DF.
    Biochim Biophys Acta; 1982 May 19; 680(2):142-51. PubMed ID: 6284218
    [Abstract] [Full Text] [Related]

  • 2. Energy tranduction in photosynthetic bacteria. XI. Further resolution of cytochromes of b type and the nature of the co-sensitive oxidase present in the respiratory chain of Rhodopseudomonas capsulata.
    Zannoni D, Melandri BA, Baccarini-Melandri A.
    Biochim Biophys Acta; 1976 Dec 06; 449(3):386-400. PubMed ID: 11815
    [Abstract] [Full Text] [Related]

  • 3. A potentiometric and kinetic study on the respiratory chain of ferrous-iron-grown Thiobacillus ferrooxidans.
    Ingledew WJ, Cobley JG.
    Biochim Biophys Acta; 1980 Apr 02; 590(2):141-58. PubMed ID: 6245683
    [Abstract] [Full Text] [Related]

  • 4. Oxidation-reduction potentials and spectral properties of some cytochromes from Thiobacillus versutus (A2).
    Lu WP, Poole RK, Kelly DP.
    Biochim Biophys Acta; 1984 Nov 26; 767(2):326-34. PubMed ID: 6498181
    [Abstract] [Full Text] [Related]

  • 5. Oxidation of sulfur compounds and electron transport in Thiobacillus denitrificans.
    Peeters T, Aleem MI.
    Arch Mikrobiol; 1970 Nov 26; 71(4):319-30. PubMed ID: 4316972
    [No Abstract] [Full Text] [Related]

  • 6. Purification and characterization of a periplasmic Thiosulfate dehydrogenase from the obligately autotrophic Thiobacillus sp. W5.
    Visser JM, de Jong GA, Robertson LA, Kuenen JG.
    Arch Microbiol; 1996 Dec 26; 166(6):372-8. PubMed ID: 9082913
    [Abstract] [Full Text] [Related]

  • 7. Generation of reducing power in chemosynthesis. VII. Mechanism of pyridine nucleotide reduction by thiosulfate in the chemoautotroph Thiobacillus neopolitanus.
    Saxena J, Aleem MI.
    Arch Mikrobiol; 1972 Dec 26; 84(4):317-26. PubMed ID: 4403323
    [No Abstract] [Full Text] [Related]

  • 8. Stannous and cuprous ion oxidation by Thiobacillus ferrooxidans.
    Lewis AJ, Miller JD.
    Can J Microbiol; 1977 Mar 26; 23(3):319-24. PubMed ID: 15717
    [Abstract] [Full Text] [Related]

  • 9. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.
    Masau RJ, Oh JK, Suzuki I.
    Can J Microbiol; 2001 Apr 26; 47(4):348-58. PubMed ID: 11358175
    [Abstract] [Full Text] [Related]

  • 10. Spectroelectrochemical study of cytochrome c oxidase: pH and temperature dependences of the cytochrome potentials. Characterization of site-site interactions.
    Blair DF, Ellis WR, Wang H, Gray HB, Chan SI.
    J Biol Chem; 1986 Sep 05; 261(25):11524-37. PubMed ID: 3017934
    [Abstract] [Full Text] [Related]

  • 11. Spectroelectrochemical investigations of stoichiometry and oxidation-reduction potentials of cytochrome c oxidase components in the presence of carbon monoxide: the "invisible" copper.
    Anderson JL, Kuwana T, Hartzell CR.
    Biochemistry; 1976 Aug 24; 15(17):3847-55. PubMed ID: 182219
    [Abstract] [Full Text] [Related]

  • 12. Respiration-driven proton translocation in Thiobacillus neapolitanus C.
    Drozd JW.
    FEBS Lett; 1974 Dec 01; 49(1):103-5. PubMed ID: 4442584
    [No Abstract] [Full Text] [Related]

  • 13. Carbon monoxide-cytochrome interactions in the brain of the fluorocarbon-perfused rat.
    Piantadosi CA, Sylvia AL, Saltzman HA, Jöbsis-Vandervliet FF.
    J Appl Physiol (1985); 1985 Feb 01; 58(2):665-72. PubMed ID: 2984161
    [Abstract] [Full Text] [Related]

  • 14. Components of the cytochrome system of Alcaligenes sp. N.C.I.B., 11015, with special reference to particulate bound c-type cytochromes.
    Shidara S.
    J Biochem; 1980 Apr 01; 87(4):1177-84. PubMed ID: 6248504
    [Abstract] [Full Text] [Related]

  • 15. Cytochromes and thiosulphate oxidation in an aerobic Thiobacillus.
    TRUDINGER PA.
    Biochim Biophys Acta; 1958 Oct 01; 30(1):211-2. PubMed ID: 13584430
    [No Abstract] [Full Text] [Related]

  • 16. Generation of reducing power in chemosynthesis. VI. Energy-linked reactions in the chemoautotroph, Thiobacillus neapolitanus.
    Aleem MI.
    Antonie Van Leeuwenhoek; 1969 Oct 01; 35(3):379-91. PubMed ID: 4315585
    [No Abstract] [Full Text] [Related]

  • 17. New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiobacillus novellus.
    Taylor BF, Hoare DS.
    J Bacteriol; 1969 Oct 01; 100(1):487-97. PubMed ID: 5344108
    [Abstract] [Full Text] [Related]

  • 18. The electron-transport chains of the obligate methylotroph Methylophilus methylotrophus.
    Cross AB, Anthony C.
    Biochem J; 1980 Nov 15; 192(2):429-39. PubMed ID: 7236221
    [Abstract] [Full Text] [Related]

  • 19. Four different b-type cytochromes in the halophilic archaebacterium, Halobacterium halobium.
    Hallberg Gradin C, Colmsjö A.
    Arch Biochem Biophys; 1989 Jul 15; 272(1):130-6. PubMed ID: 2735759
    [Abstract] [Full Text] [Related]

  • 20. Rate enhancement of the internal electron transfer in cytochrome c oxidase by the formation of a peroxide complex; its implication on the reaction mechanism of cytochrome c oxidase.
    Gorren AC, Dekker H, Vlegels L, Wever R.
    Biochim Biophys Acta; 1988 Mar 09; 932(3):277-86. PubMed ID: 2831974
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.