These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


192 related items for PubMed ID: 6284452

  • 21. Excision of micronuclear-specific DNA requires parental expression of pdd2p and occurs independently from DNA replication in Tetrahymena thermophila.
    Nikiforov MA, Smothers JF, Gorovsky MA, Allis CD.
    Genes Dev; 1999 Nov 01; 13(21):2852-62. PubMed ID: 10557212
    [Abstract] [Full Text] [Related]

  • 22. Elimination of germ-line tandemly repeated sequences from the somatic genome of the ciliate Oxytricha fallax.
    Dawson D, Buckley B, Cartinhour S, Myers R, Herrick G.
    Chromosoma; 1984 Nov 01; 90(4):289-94. PubMed ID: 6439495
    [Abstract] [Full Text] [Related]

  • 23. DNA elimination and its relation to quantities in the macronucleus of Tetrahymena.
    Bodenbender J, Prohaska A, Jauker F, Hipke H, Cleffmann G.
    Dev Genet; 1992 Nov 01; 13(2):103-10. PubMed ID: 1499151
    [Abstract] [Full Text] [Related]

  • 24. Micronuclear DNA of Oxytricha nova contains sequences with autonomously replicating activity in Saccharomyces cerevisiae.
    Colombo MM, Swanton MT, Donini P, Prescott DM.
    Mol Cell Biol; 1984 Sep 01; 4(9):1725-9. PubMed ID: 6092934
    [Abstract] [Full Text] [Related]

  • 25. Organization of gene and non-gene sequences in micronuclear DNA of Oxytricha nova.
    Boswell RE, Jahn CL, Greslin AF, Prescott DM.
    Nucleic Acids Res; 1983 Jun 11; 11(11):3651-63. PubMed ID: 6304639
    [Abstract] [Full Text] [Related]

  • 26. The formation of new nucleoli during macronuclear development of the hypotrichous ciliate Stylonychia lemnae visualized by in situ hybridization.
    Maercker C, Harjes P, Neben M, Niemann H, Sianidis G, Lipps HJ.
    Chromosome Res; 1997 Aug 11; 5(5):333-5. PubMed ID: 9292238
    [Abstract] [Full Text] [Related]

  • 27. Effects of nullisomic chromosome deficiencies on conjugation events in Tetrahymena thermophila: insufficiency of the parental macronucleus to direct postzygotic development.
    Ward JG, Davis MC, Allis CD, Herrick G.
    Genetics; 1995 Jul 11; 140(3):989-1005. PubMed ID: 7672597
    [Abstract] [Full Text] [Related]

  • 28. Nucleotide sequence structure and consistency of a developmentally regulated DNA deletion in Tetrahymena thermophila.
    Austerberry CF, Yao MC.
    Mol Cell Biol; 1987 Jan 11; 7(1):435-43. PubMed ID: 3031472
    [Abstract] [Full Text] [Related]

  • 29. Reorganization of unique and repetitive sequences during nuclear development in Tetrahymena thermophila.
    Brunk CF, Tsao SG, Diamond CH, Ohashi PS, Tsao NN, Pearlman RE.
    Can J Biochem; 1982 Sep 11; 60(9):847-53. PubMed ID: 7172094
    [Abstract] [Full Text] [Related]

  • 30. Cell-cycle regulation as a mechanism for targeting proteins to specific DNA sequences in Tetrahymena thermophila.
    Wu M, Allis CD, Gorovsky MA.
    Proc Natl Acad Sci U S A; 1988 Apr 11; 85(7):2205-9. PubMed ID: 3353376
    [Abstract] [Full Text] [Related]

  • 31. Developmentally regulated telomere addition in Tetrahymena thermophila.
    Spangler EA, Ryan T, Blackburn EH.
    Nucleic Acids Res; 1988 Jun 24; 16(12):5569-85. PubMed ID: 2838822
    [Abstract] [Full Text] [Related]

  • 32. An unusual sequence arrangement in the telomeres of the germ-line micronucleus in Tetrahymena thermophila.
    Kirk KE, Blackburn EH.
    Genes Dev; 1995 Jan 01; 9(1):59-71. PubMed ID: 7828852
    [Abstract] [Full Text] [Related]

  • 33. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome.
    Yakisich JS, Kapler GM.
    Nucleic Acids Res; 2006 Jan 01; 34(2):620-34. PubMed ID: 16449202
    [Abstract] [Full Text] [Related]

  • 34. DNA rearrangements associated with the H3 surface antigen gene of Tetrahymena thermophila that occur during macronuclear development.
    Tondravi MM.
    Curr Genet; 1988 Dec 01; 14(6):617-26. PubMed ID: 2854007
    [Abstract] [Full Text] [Related]

  • 35. Amitotic division of the macronucleus in Tetrahymena thermophila: DNA distribution by genomic unit.
    Endo M, Sugai T.
    Zoolog Sci; 2011 Jul 01; 28(7):482-90. PubMed ID: 21728796
    [Abstract] [Full Text] [Related]

  • 36. Tandemly repeated C-C-C-C-A-A hexanucleotide of Tetrahymena rDNA is present elsewhere in the genome and may be related to the alteration of the somatic genome.
    Yao MC, Blackburn E, Gall J.
    J Cell Biol; 1981 Aug 01; 90(2):515-20. PubMed ID: 7287815
    [Abstract] [Full Text] [Related]

  • 37. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.
    Li S, Yin L, Cole ES, Udani RA, Karrer KM.
    Dev Biol; 2006 Jul 15; 295(2):633-46. PubMed ID: 16712831
    [Abstract] [Full Text] [Related]

  • 38. MY01, a class XIV myosin, affects developmentally-regulated elimination of the macronucleus during conjugation of Tetrahymena thermophila.
    Garcés J, Hosein RE, Gavin RH.
    Biol Cell; 2009 Jul 15; 101(7):393-400. PubMed ID: 19032155
    [Abstract] [Full Text] [Related]

  • 39. Evidence for chromosomal macronuclear substructures in Tetrahymena.
    Seyfert HM.
    J Protozool; 1979 Feb 15; 26(1):66-74. PubMed ID: 26306339
    [Abstract] [Full Text] [Related]

  • 40. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila.
    Cui B, Gorovsky MA.
    Mol Cell Biol; 2006 Jun 15; 26(12):4499-510. PubMed ID: 16738316
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.